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Abstract. Retailers colocate with rivals to take advantage of economies of agglomeration
even though colocation implies greater competition. Using data on all new car transactions
registered in Ohio from 2007 to 2014, we estimate a structural model of consumer search for
spatially differentiated products that explicitly captures the agglomeration and compe-
tition effects of retail colocation. Search frictions generate an average of $333 per car
in dealer markups. Agglomeration implies that dealer closures could harm incumbent

colocated dealers, even though the incumbent dealers would face less competition. Our
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results inform the recent policy debate surrounding the massive downsizing of car retail

networks and highlight the role of contagion in brick-and-mortar retailing.
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1. Introduction
Economists and marketers have long sought to un-
derstand the location decisions of retail stores and
the effects of these decisions on industry profits and
consumer welfare. Particular attention has been paid
to why retailers tend to locate near each other even
though colocation implies fiercer competition. A classic
explanation is related to consumers’ limited informa-
tion, for example, as in Stahl (1982) and Wolinsky
(1983). If consumers must engage in costly search to
resolve informational problems before purchase, then
they are more likely to search areas where there is a
concentration of stores to limit their search costs.
Consumer search creates an agglomeration benefit for
retailers to colocate. However, colocating with rival
stores could intensify price competition, potentially
outweighing the agglomeration benefit from colocation.
In this paper, we empirically study the underlying
demand-driven reasons of retail colocation in the new
car retail industry. In particular, we examine the extent
to which the agglomeration and competition effects
are related to consumer search. To do this, we present
a structural model of consumer search for spatially
differentiated products. In the model, consumers have
limited information about their demand for particular
new cars, but can learn their exact valuation of a car by
paying a search cost to visit a geographic cluster of new
car dealers. This search cost depends on the cluster size
and the distance between the consumer’s residence
and the center of the dealer cluster. After visiting a
dealer cluster, consumers learn their exact utility from
all cars sold in the geographic cluster." Consumers
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choose which clusters to search, and conditional on a
search set, they choose their best option among the
searched products. The model gives rise to a positive
or negative agglomeration effect of dealer colocation:
clusters with more dealers can be more or less likely
to be searched by consumers. Whether a positive ag-
glomeration effect exists and whether the agglomera-
tion effect dominates the competition effect are empirical
questions and depend on model primitives that we
estimate.

To estimate the model, we construct a data set that
includes all new car sales registered in Ohio from
2007 to 2014. For each registration, we know the make
(brand), model, model year, transaction price, trans-
action date, identity and location of the selling dealer,
and zip code of the buyer’s residence. The detailed
spatial nature of the data allows us to accurately
capture the spatial demand substitution patterns that
underlie the demand-driven motives of retail colo-
cation. Our estimates imply that dealer colocation has
a positive agglomeration effect on consumer search.
Our estimation results also suggest that the car price
needs to be $45 lower on average to compensate
consumers from traveling an additional mile to search
a dealer cluster, although consumers need to be com-
pensated less for traveling to clusters with more
available products. We also find that the consumer
search frictions generate $333 on average in markups
per car for car dealers, and there is significant het-
erogeneity in these information rents.”

Although our estimates suggest a positive ag-
glomeration effect of colocation on the demand for
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vehicles, it is not clear whether dealers would prefer
to locate near each other because having closer rivals
also implies fiercer price competition. To understand
the balance between agglomeration and competition,
we decompose these effects in a counterfactual sce-
nario where two car brands, Pontiac and Saturn, are
each shut down (before their actual dissolutions).
Colocated dealers are harmed through the agglom-
eration effect because fewer consumers will find that
location desirable to search. However, dealer clo-
sures help colocated firms through the typical com-
petition effect: fewer close rivals implies less price
competition. To quantify the competition effect, we
simulate what would happen after closures when
consumers are forced to choose another car within the
same geographic cluster but not to reoptimize their
search sets. To quantify the agglomeration effect, we
simulate the equilibrium outcomes when consumers
are allowed to reoptimize their search sets but not to
adjust their relative choice probabilities within the
cluster.

In the cases of both Pontiac and Saturn closures, our
estimates suggest that the agglomeration effect harms
neighboring dealers. However, we find that in the
case of Pontiac closures, the competition effect dom-
inates the agglomeration effect, and nearby dealers
are better off. In the case of Saturn closures, we con-
clude the opposite: that nearby dealers are worse off
after Saturn dealership closures. Our findings have
implications for policy makers and managers. In a
case when the agglomeration effect dominates the
competition effect, one store’s exit will make other
colocated stores worse off and may result in a closure
spiral, harming the local economy. In this regard,
government bailout may be needed to prevent such
closure spirals. In this case, moreover, it is not wise
for managers to take aggressive strategies that aim
to drive neighboring competitors out of business, and
it is also profitable to locate near other stores.

The new car retail industry is an ideal setting for
such a study. First, it is a large industry with ubig-
uitous retail colocation. For example, in Ohio (the
geographic region of the data we use in our study),
more than 85% of new car dealers are located within
half a mile of a rival dealer. Along with the results of
our structural model, we present evidence from car
purchase patterns that illustrate the importance of
retail colocation and consumer search in this indus-
try. Second, the automobile industry has experienced
massive retail closures over the past half century.
In particular, car dealer closures became a debated
policy question during the most recent U.S. financial
crisis. During the Troubled Asset Relief Program
(TARP), which provided billions of dollars in aid to
the U.S. automobile manufacturing industry, Con-
gress, state dealer associations, and car manufacturers

battled over the legalities and policy implications of
proposals by General Motors (GM) and Chrysler to
close thousands of franchised new car dealers. How-
ever, little is known empirically about the local mi-
croeconomic ramifications of retail closures. Our study
helps fill the gap in the literature and sheds some
light on this policy debate.

Most prior studies on retail colocation have infer-
red the agglomeration-competition trade-off from
the revealed entry and location decisions of profit-
maximizing retailers. Some of these studies have found
that the competition effect dominates, for example,
Seim (2006), Jia (2008), and Zhu and Singh (2009). As a
result, retailers prefer to differentiate locations, and
the implication is that a retailer’s exit would benefit
other incumbents. On the other hand, Vitorino (2012)
finds evidence that the agglomeration effect domi-
nates in shopping malls, Ellickson et al. (2013) find
that there exists a net positive agglomeration effect
in the big-box retail industry, and Datta and Sudhir
(2013) find evidence of the agglomeration benefits
of retail colocation using variation in zoning laws.
In our paper, we present and estimate a structural
model of consumer search for spatially differentiated
products, thus specifically modeling the demand-
side mechanism for the agglomeration benefits of
retail colocation.

Our paper also contributes to the burgeoning lit-
erature on empirically understanding limited con-
sumer information. For example, Sovinsky Goeree
(2008) estimates a model where advertising affects
the choice sets of consumers and show how lim-
ited consumer information contributes to firms” mar-
ket power. Much of this literature has used costly
consumer search to explain limited consumer in-
formation, including Mehta et al. (2003), Hong and
Shum (2006), Wildenbeest (2011), Seiler (2013), and
Honka (2014), and others. Our study differs from
previous studies by explicitly modeling the spatial
colocation of products and showing how consumer
search implies an agglomeration effect of retail colo-
cation. Our model is closely related to the prior liter-
ature on consumer search. Both De los Santos et al.
(2012) and Honka and Chintagunta (2016) analyze
data on consumer actual searches for consumption
goods and find that the simultaneous search strategy
matches their data better than the sequential search
strategy. Without appropriate data to test different
search models, we follow Honka (2014) and Moraga-
Gonzalez et al. (2015) by assuming that consumers
adopt the simultaneous search strategy to search for
new cars.

Our model closely follows that of Moraga-Gonzélez
et al. (2015), who develop and estimate a structural
model of consumer search for new cars in the Neth-
erlands.” There are two main differences between our
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setup and theirs: (i) in our model, search occurs at the
level of a geographic dealer cluster instead of a single
dealer, and (ii) we estimate the variance of search-
cost shock, which is crucial to quantifying agglom-
eration and plays a similar role to the nesting pa-
rameter in a nested logit framework. On the first
point, we validate this assumption by estimating the
importance of cluster size in the search cost and
presenting descriptive statistics showing that dealer
colocation helps explain purchase behavior. On the
second point, we also allow for agglomeration at
the cluster level to be zero or negative by including
a term that captures cluster size. Also, estimating the
variance of search-cost shocks is crucial for under-
standing the agglomeration effect, as the value of
this variance parameter determines whether the
agglomeration effect dominates the competition
effect. An additional point of contrast between our
paper and theirs is that we use individual purchase
data, so we observe precisely how far consumers
travel to purchase cars. Accordingly, we use Goolsbee
and Petrin’s (2004) two-step simulated maximum
likelihood method to estimate the nonlinear param-
eters of the model.

Finally, our counterfactual analysis contributes to
the literature on retail closure and brand termination.
Benmelech et al. (2014) use data across retail in-
dustries to estimate the effect of closures due to chain-
level financial problems on the closure decisions
of close-by incumbent retail outlets. They find that
nearby retail outlets are more likely to close after a
retailer’s closure, which they interpret as evidence of
agglomeration effects of closures of bankrupt firms’
stores on nonbankruptincumbent stores. Ozturk et al.
(2016) examine the effect of Chrysler dealer clos-
ings on the prices of nearby dealers using a national
sample of new car transactions in a differences-in-
differences framework. They find that after the clo-
sures, nearby dealers experience a lower price in-
crease than distant dealers, which is evidence that the
agglomeration effect exists in car buying. Different
from the existing studies in this field, we develop a
structural model in which either positive or negative
agglomeration effects can present and quantify the
effects of closures by decomposing the competition
and agglomeration effects.

2. Data and New Car Retail Industry

We combine several data sets for our analysis. Our
primary data include detailed records of all new
vehicle transactions that were registered in Ohio from
2007 to 2014. The second data source provides general
information on characteristics of all vehicles sold
during this time period, and the third data source
provides information on all new car dealerships in
Ohio. We also use American Community Survey data

from the U.S. Census to measure the local demo-
graphics at the zip-code level.

2.1. Data Description

The primary data were obtained from the Ohio Bu-
reau of Motor Vehicles and consist of all new vehicle
transactions initially registered in Ohio from 2007
through 2014. For each transaction, we know the brand
(car make), model, model year, transaction price, and
transaction date. We also know the identity of the selling
dealer and the five-digit zip code of the buyer.

Throughout this paper, we define a product by car
model and model year, for example, Toyota Camry
2010 model. In total, the data include 1,892 products.
We make a number of sample selection decisions for
the raw data. First, we remove all commercial vehi-
cles, motorcycles, trailers, and consumer pickup
trucks.* Second, we drop the products with average
prices above $70,000 and small dealers with annual
sales below 100 units. These account for around 4%
transactions over the eight years. In the end, we are
left with more than 2.5 million new car transactions of
34 brands sold by 970 dealers. We define a dealer as
a particular brand franchise at a particular location.

We merge the transactions data with information
on car characteristics from Edmunds.com. We use
three commonly used characteristics to define the char-
acteristics of a car: acceleration (horse power divided
by weight), miles per dollar (miles per gallon di-
vided by dollars per gallon), and size (length multi-
plied by width and height). We also dichotomize cars
into luxury and nonluxury brands and U.S. and non-
U.S.brands.” Table 1 presents the descriptive statistics
of the 2.5 million transactions included in our sample.
The average transaction price is $28,253, with a stan-
dard deviation of $11,318. Among all new cars regis-
tered in Ohio over these eight years, 11% of them are
luxury brands and 45% are U.S. brands.

Table 2 reports the demographics at the zip-code
level in Ohio from 2007 to 2014 that we will use in our
following analysis, including the median household
income in thousands of dollars, share of college de-
gree or higher, number of households, average house-
hold size, share of households with children, and the
share of urban area. Overall, there is substantial varia-
tion for all variables across zip codes. There is also a
substantial upward trend in income over our sample.

2.2. New Car Retail Industry

Table 3 presents the statistics of the top 10 brands,
including the market share in terms of the total units
sold, number of active dealers in Ohio from 2007 to
2014, share of single-brand dealerships, and the av-
erage transaction price. The top 4 brands, Honda,
Chevrolet, Ford, and Toyota, accounted for half of the
new car sales in Ohio during this time period. Of the



Downloaded from informs.org by [136.167.230.79] on 07 December 2022, at 07:13 . For personal use only, al rights reserved.

1912

Murry and Zhou: Consumer Search and Automobile Dealer Colocation
Management Science, 2020, vol. 66, no. 5, pp. 1909-1934, © 2019 INFORMS

Table 1. Summary Statistics of New Car Transactions in Ohio from 2007 to 2014

Variable Mean SD Min Median Max
Transaction price 28,253 11,318 15,312 25,794 65,965
Acceleration 591 1.57 2.85 5.57 11.08
Car size 0.84 0.14 0.52 0.81 1.50
Miles per dollar 8.07 1.72 3.63 7.90 17.46
Luxury brand 0.11 0.31 0 0 1
U.S. brand 0.45 0.50 0 0 1

Notes. Our selected sample includes 2,503,734 new car sales in Ohio from 2007 to 2014, accounting for
101,371 product-dealer-year combinations. Acceleration is the ratio of horse power over the curb weight.
Miles per dollar is the average of highway and local miles per gallon divided by gasoline price per gallon
in dollars. Car size is the multiplication of car length, width, and height, measured in 100 inches. SD,

standard deviation.

970 dealers, 611 (63%) sold only one brand. The share
of single-brand dealers varies significantly across
brands. For example, among all 55 dealers that sold
Honda models, 46 of them (84%) sold Honda cars
exclusively. In contrast, only 4 out of 119 dealers sell-
ing Jeep were single branded. Along with geographic
colocation, multiple-brand dealers are an important
aspect of agglomeration in this industry.

Table 4 presents the number of active new car
dealers, the total units sold, and the average trans-
action price in Ohio from 2007 to 2014. The new car
sales dropped dramatically during the financial crisis,
and this drop was particularly severe for U.S. brands.
Along with the sales drop, the number of active
dealerships dropped from 759 in 2007 to 635 in 2010
(a 16% drop). In particular, the number of dealers
selling U.S. brand dropped from 510 in 2007 to 379
in 2010 (a 26% drop), and the total units sold of
U.S. brands dropped by 30% during this time period.

Recent car dealer closures stemmed from two pri-
mary causes. First, American manufacturers discon-
tinued a number of brands in the mid to late 2000s,
starting with Oldsmobile in 2004, and continuing
with Saturn and Pontiac in 2009, Mercury in 2010, and
Saab in 2011.° These brands had seen steady declines
in sales and were reported as being unpopular and
out of touch with consumer needs in media and in-
dustry reports (Valdes-Dapena 2009). In Ohio, be-
cause of the terminations of product lines, 83 dealers

stopped selling Pontiac, 20 dealers stopped selling
Saturn, 42 dealers stopped selling Mercury, and 8
dealers stopped selling Hummer. The second cause of
the dealer closures had to do with the financial crisis
more directly. GM and Chrysler received TARP U.S.
government loans in 2009, and because of that, their
subsequent reorganization were allowed to terminate
dealers.” In our counterfactual exercises, we will ex-
amine the effects of dealer closures and offer an ex-
planation of why even unclosed dealers might prefer
other dealers not to close. We will also show that the
gain of rival dealers is exaggerated by the standard full-
information demand model.

2.3. Spatial Distribution of Ohio Car Dealerships

We group the 970 dealerships into 248 clusters by
using the density-based spatial clustering of appli-
cations with noise (DBSCAN) algorithm. The DBSCAN
algorithm is ideal for grouping retail locations, as the
objective is to partition points into dense regions sep-
arated by nondense regions. Importantly, the algorithm
allows some points to be unclassified—so called noise
points. Because there are many isolated car dealers in
Ohio, we added a preclassification stage to the DBSCAN
algorithm, where we combined dealers at very similar
locations (i.e., in the same city block or multibranded
dealerships located at the same address) into a single
observation and preclassified all observations that

Table 2. Local Demographics in Ohio by Zip Code by Year

Mean SD Min Median Max
Median household income ($000s) 48.28 14.05 10.06 47.23 140.56
Share of college degree or above 0.19 0.12 0.03 0.15 1
Number of households 3,850 4,932 0 1,515 26,802
Average household size 2.54 0.34 1.01 2.52 12
Share of households with children 0.30 0.07 0.01 0.29 1
Share of urban area 0.43 0.43 0 0.34 1

Source. American Community Survey.

Notes. The statistics are calculated based on the demographics of all Ohio zip codes from 2007 to 2014,
including 9,418 unique zip code-year combinations. SD, standard deviation.
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Table 3. Top 10 Brands

Share of Single-brand
units sold (%) No. of dealers dealers Average trans. price ($)
Honda 14 55 46 84% 25,687
Chevrolet 13 204 145 71% 26,222
Ford 13 162 126 78% 27,097
Toyota 10 53 17 32% 25,754
Kia 5 45 29 64% 22,759
Hyundai 5 42 25 60% 22,984
Nissan 5 44 31 70% 26,202
Jeep 4 119 4 3% 30,334
Dodge 3 114 13 11% 26,838
Subaru 3 27 13 48% 25,777
All 100 970 611 63% 27,957

Source. Ohio Bureau of Motor Vehicles.

Notes. The statistics are calculated based on all new car sales that were registered in Ohio from 2007 to
2014. The sample selection is described in the text. The number of dealers in any given year is less than
the total active dealers reported in Table 3 because of industry churn, primarily exit of Pontiac, Saturn,

and other U.S. dealers and entry of foreign dealers.

were more than 10 kilometers from the next closest
dealer as isolated dealers.”

We display visual results of the spatial distribution
of dealership clusters using the DBSCAN algorithm
in Appendices C and D. Among these 970 dealers, 74
of them are grouped into single-dealership clusters
before we estimate clusters using the algorithm, and
the remaining 916 dealers are grouped into 248 multi-
dealer clusters. In Appendix C, we present a macro
visualization of the clusters across the entire state.
On the right-hand side is a map of the state of Ohio,
and on the left-hand side is a graph of all the points
we cluster, where the open circles are points the al-
gorithm assigned as single dealers, and the colored
crosses represent dealers in dealer clusters.

Because Ohio is a large state, it is difficult to get a
sense of the clustering results without zooming into
to particular geography. In Appendix D, we display
the clustering results for four different cities/towns
in Ohio. Each color represents a different cluster ex-
cept orange, which in every case represents multiple

separate clusters (there are many more clusters than
clearly distinguishable colors). Each point may con-
tain many dealer/brands, and the number of brands
for each point is displayed below the marker.

Table 5 reports the descriptive statistics at the
cluster-year level. On average, a cluster includes 3
physical dealers offering 35 car models of 4 brands
and selling 1,403 cars annually. There is significant
heterogeneity across clusters. The smallest cluster
only includes 1 dealer offering 1 brand and selling 50
cars a year, whereas the largest cluster includes 19
dealers offering 188 car models of 25 brands and
selling 16,909 a year. The clusters themselves are not
uniformly sized, and traveling between any two
dealers in any given cluster may take different time.
Some clusters are trivial clusters with one location/
brand. Some clusters have zero or close to zero dis-
tance between all of the dealers because they are at
the same location or have a latitude/longitude that
are approximately the same. Other clusters can have
a width as great as 8 kilometers, the maximum size

Table 4. New Car Dealerships, Sales, and Price in Ohio from 2007 to 2014

Number of dealers

Total units sold (000)

Average transaction price ($)

Year All uU.s. Non-U.S. All Us. Non-U.S. All U.s. Non-U.S.
2007 759 510 352 295 138 157 26,143 26,339 25,972
2008 738 477 357 299 131 168 25,942 26,168 25,767
2009 666 410 320 233 96 137 26,539 27,386 25,948
2010 635 379 290 267 138 159 27,710 28,905 26,902
2011 677 416 296 321 145 176 28,388 29,075 27,821
2012 689 416 305 345 151 192 28,566 29,323 27,970
2013 693 421 305 368 165 202 29,293 30,092 28,641
2014 690 416 309 376 173 203 29,798 30,736 29,002

Source. Ohio Bureau of Motor Vehicles.
Notes. The statistics are calculated based on all new car sales that were registered in Ohio from 2007 to
2014. The sample selection is described in the text.
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Table 5. Descriptive Statistics of Dealership Clusters

Mean SD Min Median Max

No. of dealers 3 3 1 2 19
No. of brands 4 4 1 3 25
No. of models 35 34 3 22 188
No. of products 56 55 4 35 307
No. of units sold 1,403 2,263 50 456 16,909

Notes. The statistics are calculated based on 248 dealer clusters in
Ohio from 2007 to 2014, 1,784 cluster-year combinations in total.
The product is defined at the car model-model year level (e.g.,
Toyota Camry 2010 model). SD, standard deviation.

we allow for a cluster. The average distance between
dealer locations in multidealer-location clusters (i.e.,
not including multifranchised dealer locations) is
2.05 miles. The 25th quantile of the maximum distance
between two locations in a cluster is 1.4 miles, and the
75th quantile of the maximum distance between two
locations is 3.6 miles. Although making small changes
to the DBSCAN parameters does not change these
descriptive statistics much, we do not reestimate the
model presented below for various parameter choices.
See Table 5 for additional statistics.

2.4. Consumer Travel and Dealer Colocation

In this section, we present new car buyers’ choices of
dealers and their travel patterns. Figure 1(a) is a his-
togram of the distance from a buyer’s residence to the
dealer he or she purchased from. The average travel
distance is 13.2 miles, the standard deviation is 18.5
miles, and the median is 8.4 miles. Twenty-nine per-
cent of the Ohio new car buyers traveled less than
5 miles to buy their cars, 28% traveled more than
5 but less than 10 miles, 17% traveled more than 10

Figure 1. Distribution of Travel Distance
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Source. Ohio Bureau of Motor Vehicles.

but less than 15 miles, and the remaining 26% traveled
more than 15 miles. In particular, 90% buyers traveled
less than 27 miles, and 95% buyers traveled less than
40 miles.

Figure 1(b) is a histogram of the extra distance that
buyers traveled passed the closest dealer cluster. Only
14% of the Ohio new car buyers bought their cars
from the nearest dealer clusters, 17% traveled less than
5 miles beyond their nearest clusters, 29% traveled
more than 5 miles but less than 10 miles beyond their
nearest clusters, and the remaining 40% traveled more
than 10 miles beyond their nearest clusters. Our hy-
pothesis is that one reason consumers travel is because
the distant cluster that they choose offers more variety
or lower prices, and they have limited ability to search
all clusters. Regardless of their motives of traveling,
the facts we present here suggest that new car buyers
do search.

Finally, we present evidence that dealer colocation
is important for consumer demand. To do this, we
run a regression where the dependent variable is the
distance a consumer traveled to purchase a car, and
the key explanatory variable is the size of the geo-
graphic cluster, in terms of the number of dealers,
where the car was purchased. The hypothesis is that
consumers will travel farther to purchase cars from
larger dealer clusters if colocation positively affects
the purchase decision. The results are presented in
Table 6. In the first column, we control for the buyer
zip-code fixed effects. In the second column, we add
the dummies indicating the make of the purchased
car. The buyer zip-code effects control for differences
in retailing environment faced by different consumers.
For example, rural consumers may tend to travel far-
ther just because dealer density is low in rural areas,

(b)
Distance past the closest cluster
35%

30% -
25% -
20% -
15%

10%

0% - |

Distance (miles)

Notes. Travel distance refers to the distance between a new car buyer’s residence and the selling dealer’s address. Figures are drawn based on
2,503,734 new car transactions in Ohio from 2007 to 2014. Sample selection is described in the text.
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Table 6. Regression: Travel Distance and Cluster Size

DV: Purchase travel distance (1) 2)
Number of colocated dealers 0.165 0.139
(0.002) (0.002)
Constant 11.954 14.417
(0.0213) (0.107)
Buyer zip-code effect Yes Yes
Car make effect No Yes
R? 0.083 0.090
Observations 3,005,651 3,005,651

Notes. Unit of observation is an individual car transaction from Ohio
between 2008 and 2014. The dependent variable (DV) is the distance
from the buyer’s residence to the dealer. Number of colocated dealers is
the number of dealers in the same geographic cluster as the selling
dealer, where clusters are defined as in Section 2.3.

and these consumers may also face dealers that tend to
be less colocated with other dealers. We control for the
car make because different makes have different retail
network densities. U.S. brands are generally associ-
ated with lower travel distances because the retail
networks are more dense. In both regressions, we find
that longer purchased travel distances are associated
with cars located in geographic clusters with more
dealers. We take this finding as preliminary evidence
that consumers value dealer colocation. The model we
present in the next section provides a formal mechanism
for this result.

3. Demand Model

We consider a market where differentiated cars are
sold by many geographically dispersed dealers to geo-
graphically dispersed consumers. Consumers have
limited information about the utility they derive from
each car and must engage in costly search to resolve
uncertainty before purchase.

3.1. Utility

We use subscript i to denote the consumer, subscript z
to denote the zip code, subscript j to denote the
product (e.g., Honda Accord 2010 model), subscript f
to denote the dealer (e.g., “Bob’s Honda Sales”), and
subscript ¢ to denote the year. The indirect utility that
consumer i living in zip code z derives from product j
sold by dealer f in year t is

Uizt = th,[;izt = Qipjp + P+t Eip + €igre, (1)

where x;; is a KX 1 vector of observed car attributes
including acceleration (horse power/curb weight),
miles per dollar, car size, body style, an indicator of
a luxury brand, and an indicator of a U.S. brand; pj; is
the average price of productjsold by dealer f in year t;
¢y is dealer-specific effects; 7; is the yearly dummies;
and &j; is an unobserved term at the product-dealer-
year level. Notice that we include dealer effects and
year dummies in the utility so that &z captures only

transitory demand shocks. The term ¢, is an idio-
syncratic match value that can be ascertained only
upon visiting the dealer, including the fit and com-
fortableness, personal image of the car, and specific
way that salespeople in the dealership sell the car.
Random coefficients ﬁizt and &, which capture
consumer heterogeneity in tastes for product attri-
butes and price, are assumed to take the follow-
ing form:

Brizt = i + HiPi + 0pclpny fork=1,... K,

dizt =a+ (chyzt + Cfpgfzt, (2)

where H}, is a vector of demographics at the con-
sumer’s residence zip code z in year t that affects her
preferences, y.; is the log of the median household
income in zip code z in year ¢, and ¢j;,, and szt are
assumed to follow standard normal distribution iden-
tically and independently distributed across charac-
teristics and consumers, denoted by F.(-).

Let 6; denote the mean utility across consumers
of product j sold by dealer f in year ¢,

S = Xt — Ay + @y + T + &g, ®)

and let p;z denote the heterogeneous utility that
consumer 7 living in zip code z obtains from product j
sold by dealer f in year t,

K
pizip = D X (HLBE + 05 iiy) + (7Yt + 07 )pja. (4)
k=1

Then, we can write the utility Equation (1) as
Uizjfy = 6]ft + Uizjft + Eizjfe- )

Consumers have an outside option of not purchasing
a new car from a dealer in Ohio. We assume that the
utility from the outside choiceis u;,0: = €20, Where €50
is assumed to follow a standard type I extreme value
(TIEV) distribution, identically and independently
across consumers and over years.

3.2. Main Assumptions on Consumer Search

Consumers have the choice to search cars at one or
multiple dealer clusters, where a dealer cluster rep-
resents a geographic area where dealers are colocated.
A consumer pays a cost to search a cluster. Before
searching, the consumer has expectations about the
utility she will derive from each car being sold in a
cluster, and once the costis incurred, she learns the exact
utility from each car in that area. We assume that
consumers simultaneously decide the set of clus-
ters to search, and conditional on that search set,
they choose the best option. The model is a para-
metric version of the optimal portfolio choice prob-
lem described by Chade and Smith (2006), similar
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to the consumer search application developed by
Anderson et al. (1992, chapter 7), which was recently
extended to empirical applications by De los Santos
et al. (2012) and Moraga-Gonzélez et al. (2015).

3.2.1. Simultaneous Search. The existing theoretical
literature typically models consumer search strate-
gies in two ways. One strand of the literature assumes
simultaneous (or nonsequential) search, where con-
sumers sample a fixed number of sellers and choose to
purchase from the most preferred seller among those
they have searched (see Stigler 1961, Burdettand Judd
1983, Janssen and Moraga-Gonzalez 2004). The other
strand of the literature assumes sequential search
strategy, where after each search, consumers choose
to purchase from the lowest price observed so far or
making an additional search. Both search strategies
have been adopted by empirical researchers. There
are two studies we are aware of that test which search
model is more consistent with the data in a retail
goods setting. De los Santos et al. (2012) analyze a
detailed data on the browsing and purchasing be-
havior of a large panel of consumers and find that
the simultaneous search strategy outperforms the se-
quential search model in their setting. Honka and
Chintagunta (2016) also find that the simultaneous
search better matches their data on the demand for
auto insurance, by examining the price variation in
consumers’ observed considerations sets. Because we
do not observe individual consumer’s consideration
set or search process in our data, we are unable to let
the data tell us which search strategy better repre-
sents our empirical setting. New car dealers are heavy
advertisers, and their locations are usually well
marked and near highways or transit thoroughfares. We
think it is reasonable that car shoppers are well informed
about dealer locations, car features, and other aspects of
car buying before they plan shopping trips. Moreover,
consumers could easily recall a previously searched car,
which would violate an assumption of many sequential
search models (see De los Santos et al. 2012).°

3.2.2. Information Set. We now explain consumers’
information during the search process. First, con-
sumers know the observed and unobserved product
attributes at the product-dealer-year level, (xjt, @
11, &) for all j, f, t in Equation (1). Second, con-
sumers know the average price of each product
charged by each dealer in each year, pj; for all j, f, t.
This type of information is available on a plethora
of car-buying websites. Also, advertisements may
communicate this information, along with informa-
tion about dealer-specific prices such as a dealer’s
willingness to give price discounts.'® Finally, con-
sumers know only the distribution of the match values
¢izjt before search and need to engage in costly search

to know the exact values. As is common in the liter-
ature, we assume that ¢;,j5 follows a standard TIEV
distribution, independently across consumers, prod-
ucts, dealers, and over years.

In our model, the term ¢;,j4 captures the information
that can be ascertained only upon visiting the dealer.
In reality, consumers search may be over these in-
dividual match values or over the product prices or
some other common attributes. Unfortunately, our
data do not allow us to identify the source of con-
sumers’ uncertainty. If consumers search to resolve
their uncertainty on price, we can interpret the term
&izjpt as the deviation of a consumer’s individual price
from the average price. Let consumer i’s (living in zip
code z) utility from product j sold by dealer f in year ¢
be s = Xjtfizt — APzt + £, Where Piyjp is the indi-
vidual price that is unknown to consumer i before
searching. We can decompose this individual price
into two components: pijs = pjs + izjsr, Where pg is
the average price of product jsold by dealer f in year t,
and 9, is i’s deviation from the average. If we set
€izjt = AV, the model of searching over match values
in the paper is equivalent to this one of searching
over price.

There are three things worth mentioning about the
equivalence of match value and price search. First, to
make the two models equivalent, the price coefficients
have to be the same across consumers. Second, to
make the two models equivalent, either we can as-
sume €, follows a standard TIEV distribution and
Vit follows a TIEV distribution with location pa-
rameter 0 and scale parameter 1/a, or we can assume
Vit follows a standard TIEV distribution and €.
follows a TIEV distribution with location parameter 0
and scale parameter a. Third, searching over prices
and searching over match values are not the same if
we consider the supply-side choices. In theory, var-
iation of transaction price could help identify the
source of uncertainty. However, using that variation
for identification requires us to incorporate the price-
bargaining process between consumers and dealers
into the model, which is unachievable given our al-
ready complicated search model and our lack of
search and bargaining data.

3.3. Search and Purchase Decisions

Let $; be the set of products from dealer f in year ¢,
and let &, be the set of dealers in cluster m in year ¢.
Let ¥; define consumer i’s set of all possible subsets
of dealer clusters, with element S. For example, in
the two-cluster case, the set of all possible subsets
of dealer clusters, &, includes {J}, {1}, {2}, {1&2},
where {O} represents “do not search,” {1} represents
“search cluster 1 only,” {2} represents “search cluster
2 only,” and {1&2} represents “search both clusters.”
Here, we assume that consumers never travel farther
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than 40 miles to search for cars, which accounts for
95% of buyers in our sample. As a result, the potential
dealer clusters that are considered vary across con-
sumers, depending on which zip code they live in.
This restriction dramatically reduces the computa-
tional burden of computing consumers’ optimal
search sets. Otherwise, it is computationally infeasible
to compute them by allowing consumers to optimally
choose their search sets among 248 clusters.

The expected gain that consumeriliving in zip code
z obtains from a search set S € ¥; is

uizt(s) =E,

max{upo,  Max  Upip}
]EiﬂfEﬂ",,,,,meS

=In

1+ D

JEF 1 fEF i mES

exp(Oj + pizjft)

7

where the analytic expression exists because the
match values ¢ follows a TIEV distribution.

We define the expected value that consumer iliving
in zip code z gets from a search set S € ¥;, denoted
by Vi.(S), as the difference between her expected gain
from S and the searching cost that she needs to pay to
visit all clusters included in the search set S. Further-
more, we specify the search cost of a search plan S as

Cizt(s) = Z Cizmt + Uizt + Wizst, (6)

meS

where ¢y is the search cost that consumer 7 living
in zip code z needs to pay if she visits a dealer cluster m
in year t, v;; is an individual-year-specific term that
captures the search-cost shocks associated with that
consumer, and wjs is an individual-search set-
year—specific error term that captures the unobserved
search-cost shocks such as the traffic condition of that
search. We assume that v;;; follows a normal distri-
bution with mean zero and standard variance 2. If
consumer i living in zip code z does not search any
cluster, her utility is Ci1(0) = Wizor

Furthermore, we assume that the search cost of
consumer i (living in zip code z) from visiting a dealer
cluster m in year t is

Cizmt = Vizdzm + PN, (7)
with y;, = Ag + HS,AY,

where d,, is the distance from consumer i’s zip code
to the geographic center of a dealer cluster m, n,; is
the number of dealers in that cluster, and HY, is a
vector of consumer i’s zip-code-level demographics
that may affect her search cost, including the log of
median household income, share of urban area, and
share of households with children under 18 years old
in i’s zip code in year t. Importantly, we include p in
the model to allow the cost of search to vary with the

size, in terms of dealers, of the clusters. Although this
does not formally test our model against the model of
Moraga-Gonzélez et al. (2017) because the models
are not nested, a positive estimate of p would sup-
port the per-dealer assumption of Moraga-Gonzélez
et al. (2017). Importantly, this additional search cost on
the number of dealers gives the model flexibility in
allowing for economies of agglomeration. As we discuss
below, a very large positive p would imply that there
is no positive demand effect of dealer colocation.
Consumer i (living in zip code z) chooses the search
set S* in year t that gives her the highest expected
utility among all possible search sets &;; that is,

Vier(S) = Vi(S) VS € .

In our model, the variation in the optimal search sets
across consumers is generated by their different val-
uations for products contained within each search
set [U;»(S)], their different distances to dealer clusters
(dzm), their different demographics (HS,), the number
of dealers in each cluster (1,,;), their idiosyncratic cost
shocks (v;;;), and their different draws of search-set-
specific idiosyncratic cost shocks (wjzs:). The size of
a consumer’s search cost ultimately determines how
many clusters she will search.

However, as pointed outby Chade and Smith (2006),
the optimal search set will not necessarily follow a
cutoff rule of an ordering of U;.(S)s from highest to
lowest. Following De los Santos et al. (2012), among
others, we analytically compute the probability of
choosing each search set by assuming that w;.s; fol-
lows a TIEV distribution with a location parameter of
zero and a scale parameter of x.'? Specifically, the prob-
ability that consumer i living in zip code z chooses a
search set S is

exp[(uz’zt(s) — Yimes Cizmt — Vizt) [ K]
1+ Zsregi eXP[(Uizt(S') - ZmES’ Cizmt — Uizt)/K] .

Pizst=

Let m/ denote the cluster of dealer f. The probability
that consumer i living in zip code z will purchase
product j from dealer f in year t conditional on a
search set S follows the familiar analytical expression

@izjﬂls = + Zj’egﬂf’eg,,,,,mes eXP( jfre [Jizj'f't) if mf¢5
0 .

Then, the unconditional probability that consumer i
purchases product j from dealer f in year ¢ is

Z @iZ]fﬂS@izStng(')/
Se¥;

Q]bl'z]f(ét/ Xt, Pt/ HZt/ dZ/ 61/ 92) =

®)

where H;; = (v, H};, HS,) includes the zip-code-level
demographics that affect consumer preference and
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search cost, 81 = (8%, 0%, a™, 0%, A, p, k, 0,,) represents
all “nonlinear” parameters in the model, and 0, =
([_3, a, @ 7;) represents all “linear” parameters in the
model.

3.4. Discussion of the Model
3.4.1 Search Cost and Substitution Patterns. Non-
trivial consumer search creates particular substitution
patterns within and across clusters. All cars within a cluster
are either in or out of a given consumer’s choice set. In this
sense, within-cluster substitution between cars is similar
to standard full-information Berry-Levinsohn-Pakes
(BLP; see Berry et al. 1995) models with zero search
cost. In our model, however, consumers dislike
traveling distance, and hence, all else equal, they are
more likely to visit nearby clusters. Therefore, if
two clusters are farther away, the products across
these two clusters are less substitutable, all else equal.
Particularly, the magnitude of the across-cluster
substitution depends on consumer search cost. In our
model, the parameter y measures the extent to which
consumers dislike traveling distance. Hence, a larger
y implies a lower across-cluster substitution. Simi-
larly, a larger p (the coefficient before the number of
dealers in a cluster) also implies a larger search cost,
and hence a lower cross-cluster substitution. Another
crucial parameter in our search-cost equation is «, the
standard deviation of the idiosyncratic shock to each
search set. A larger x implies more randomness, and
hence a lower importance of car attributes and trav-
eling distance in consumers’ optimal choice of search
set. In other words, a larger x implies that dealers’
location is less relevant, and hence the products in
different clusters are more substitutable. In the extreme
case when « is infinite, consumers choose each search
set among all possible sets with equal probability, and
dealers’ locations will not affect the substitution at all.
In this sense, the parameter ¥ has an interpretation
similar to that of the nesting parameter in a nested logit
model if nests are defined as geographic clusters. Just
like the nesting parameter, ¥ governs the amount of
substitution across dealer clusters, or nests. As we
discuss later, identification of this parameter is akin to
identification of the nesting parameter in Berry (1994),
or any random coefficient that controls substitution
patterns.13

3.4.2. Agglomeration, Competition, and the Economics
of Retail Closures. In our model, cars in large clusters
are more likely to be searched but less likely to be
chosen given they are searched. The former happens
because consumers find large clusters more attrac-
tive (as long as p is not too high), and the later hap-
pens because large clusters imply more choices and
greater competition. Here we explain the agglomer-
ation effect in more detail. Intuitively, the sign and

magnitude of the agglomeration effect of dealer coloca-
tion are determined by two forces. First, the likeli-
hood that a cluster is visited by a consumer depends
on the additional gain by including it into her search
set. A cluster with more dealers (and hence more
products) is, all else equal, more attractive to con-
sumers and hence more likely to be included in
search. This is because a cluster with more products
provides a higher chance for a consumer to find a
product that has the characteristics she values and
also provides more draws of the idiosyncratic shock
€izjt, and hence a higher maximum order statistic.'*
This is the agglomeration benefit from colocation.
However, the likelihood a cluster is visited by a
consumer also depends on the extra search cost if she
includes it in her search cost. Most likely, the colo-
cation of more dealers leads to a higher search cost (a
positive p). In this case, a cluster with more dealers is
more costly to include in the search set and hence less
likely to be visited, all else equal. This is the ag-
glomeration cost from colocation. Whether colocation
leads to a positive or negative agglomeration effect
crucially depends on the value of p. If p is sufficiently
small, the agglomeration benefit tends to outperform
the agglomeration cost, and hence a cluster with more
dealers tends to be more likely visited by consumers.
In contrast, if p is sufficiently large, a cluster with
fewer dealers tends to be more likely included in a
consumer’s search set.

Our model also clearly predicts how the closure
of a dealer affects other colocated dealers in the same
cluster. To illustrate this, below we walk through a
simpler two-cluster example. Consider two dealer
clusters, 1 and 2. There are n; dealers located in clus-
ter 1 and n, dealers located in cluster 2. So the set of
possible search sets is ¥ = {0, 1,2, 1&2}. For notation
simplicity, let u;s denote the consumer i’s utility from
firm f, which follows a type I extreme value distri-
bution with location parameter y and scale parame-
ter 1. For simplicity, assume that consumers have
the same search cost for a cluster which is a linear
function of the distance and the number of dealers
in that cluster, that is, ¢, = yd,, + pny,. In addition,
there exists a search-cost shock for each search set,
denoted by ws, which is assumed to follow a TIEV
distribution with location parameter 0 and scale pa-
rameter x.

The expected utility of choosing a search set S € ¥ is
Us = In(1 + (Zes 1 )et), and the search cost is cs =
V(Zmes Am) + p(Zmes ) + ws = Cs + ws. Because of the
assumption on the distribution of ws, the probability
of choosing a search set S € ¥ is

Pe = exp[(Us — Cs)/x]
STy exp|(U; —c1)/x] +exp[(Uy — ¢2)/x] 7

+ exp[(Uigr — C1a2)/ K]
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and the probability of choosing a dealer in cluster m
given a search set S is

et

Q)m\S = m~ (9)

Then, the unconditional probability of buying from a
dealer in cluster m is

P = Z 9I)Sg])nﬂS/
SeFy

where ¥, is the set of search sets that include cluster m.
We show that our model can predict either positive
or negative agglomeration effects, depending on the
parameters. Moreover, the sign of the agglomeration
effect depends on the number of dealers. We define
that the agglomeration effect of colocating in cluster m
is positive (negative) if (P, + Pig2)/Iny, is positive
(negative); that is, cluster m is more (less) likely to be
visited if more dealers colocate in that cluster.

Proposition 1. There exists a positive cutoff p;, such that
the agglomeration effect in cluster m is positive iff p < p;, and
negative iff p > p;,. Moreover, the cutoff p;, is decreasing in
n, ny and y, but increasing in .

Proposition 2. In the case of p<pj, so that the agglom-
eration effect is positive, there exists a cutoff «* such that as «
increases, the agglomeration effect becomes stronger when
K < K" and weaker when x> K"

The proofs of these propositions are in Appendix A.
Next we can show the impacts of closing a dealer
onother colocated dealers in the same cluster. Closing
a dealer in cluster 1 would lower the expected utility
of searching cluster 1 through U; and the expected
utility of searching both clusters through Ujgo.
Consider an incumbent colocated dealer j in cluster 1.
Lower U; and Uig; increase the conditional probabili-
ties ;1 and Pjj1¢0; that is, closing a dealer in cluster 1
increases the probability of purchasing from a colo-
cated dealer conditional on cluster 1 being searched.
This is the competition effect of dealer closure on a
colocated dealer. Meanwhile, when p is below (above)
pi, lower Uy and Uig decrease (increase) the prob-
ability that cluster 1 is included in consumers’ search
set, P1 + Pigo. This is the agglomeration effect of
dealer closure on a colocated dealer. In the case of
p = p;, theagglomeration effectis negative, and hence
the total effect of closing a dealer in cluster 1 would
benefit other colocated dealers in cluster 1. However,
when p < pj, the agglomeration effect is positive, and
hence the total effect of dealer closure depends on
the size of the agglomeration and competition effects.
As « increases, for example, when it is near or lower
than «*, the agglomeration effect tends to dominate
the competition effect, implying that the closing of a
dealer in cluster 1 would make the colocated dealers

in cluster 1 worse off. This is intuitive, as a low x implies
that search is less random and consumers are more
willing to substitute across clusters based on cluster
characteristics.

3.4.3. Cluster vs. Per-Dealer Search. Consumers in the
model necessarily learn the characteristics of all cars
from all dealers in a search set. This is in contrast to
models of Moraga-Gonzalez et al. (2015) and Moraga-
Gonzaélez et al. (2017), who assume that consumers
pay a cost to learn about all cars at a single dealer. Our
model does not nest theirs. A nested model would
include both a per-dealer search cost and a cost to visiting
the geographic cluster. We do not do this mainly for two
reasons.

First, the nested model would impose substantially
greater computational burden because the set of all
choice sets would become very large. Even though
Moraga-Gonzélez et al. (2015) and Moraga-Gonzélez
etal. (2017) offer a very innovative method to simplify
the computation of choice probabilities, the deriva-
tions are based on the normalization of k =1 (or g =1
inMoraga-Gonzalez etal. 2015, p. 18). In contrast, our
interest is to study the agglomeration effect, which is
shown to be sensitive to the value of k. So we cannot
normalize x to be one. Because of that, we cannot col-
lapse the computation as they suggest. Nevertheless,
the innovations of Moraga-Gonzalez et al. (2015) and
Moraga-Gonzélez et al. (2017) can be extremely use-
ful in situations where the researcher wants to model
search and is not interested in a counterfactual simula-
tion that is sensitive to the value of «.

Second, to separately identify the cluster search
cost and the per-dealer search cost in the nested
model, ideally one needs information about which
search set each consumer actually chose, which we
do not have. In that case, the number of different
searched clusters and the identities of the searched
dealers in each cluster would identify the two dif-
ferent costs. For example, if consumers consistently
searched all dealers from only a single, nearby area,
this would imply that cluster search costs are high,
but, conditional on driving to a cluster, per-dealer
search costs are low. In contrast, if consumers searched
one dealer each from many different disperse clusters,
then that would imply the cluster search cost is low. By
not modeling per-dealer search costs, we are likely
overprescribing information to consumers, in the sense
that consumer may not really know all information
about every car in a particular dealer cluster. Because
we assume consumers are overinformed within a
cluster, our model likely implies too much competi-
tion between dealers in the same geographic cluster,
so our markups are likely to be underestimated. How-
ever, this is speculative because estimates from a
nested model might imply much more cross-cluster
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substitution if the cluster search cost was estimated
as small, thus making dealers across clusters more
competitive.

4. Estimation and Results
Our estimation procedure follows Goolsbee and
Petrin’s (2004) two-step approach. In the first step,
we use the individual transaction data to maximize
the likelihood function that includes product-dealer-
year-specific dummies to capture those mean utilities.
This identifies all nonlinear parameters 0; and the
mean utilities 6. To estimate linear parameters of the
model 0, in the second step we run a regression of
the estimated mean utilities on model-dealer-year char-
acteristics, using instruments to account for correlation of
price with the unobserved quality &

In the first step, for any candidate value of 01 and any
vector of product fixed effects 9, the log-likelihood
function is

logL(9, 61)
P (0, X H, d;; 01)
_ izjf \Ot, Xt, pt/ zt, Uz, U1
= 2, e xlog| g " H., d;0,)
Z],f 1z]f( tr Xt, Py zt, Az, 1)

iz,)ft
(10)

Pizjf (01,%1,p,Hi,di;01)
Z/-f Pizjr (01,X1,p;,H;,di;01)
sumer i living in zip code z purchases product j from
dealer f given that she purchases, and I, is an in-
dicator indicating whether consumer i living in zip
code z purchases j from f in year t.

Following Goolsbee and Petrin (2004), we do not
maximize the likelihood over the entire space of
(01, 06) directly. Instead, we concentrate out the like-
lihood function and only search over the space of 0;.
To do this, we condition on 61 and solve for the vector
0:(01) that matches the observed market shares to
those predicted by the model:

where is the probability that con-

sist = Sjf (01, X1, py; 01)
b,
= Z B_iL /@izjf(ét/ Xt, p[/ Hzt/ dZt; 91 )dF(gz/ a)i)/ (1 1)
z t

where b;; is the number of potential consumers in zip
code z, By = 3, by is the total number of potential
consumers, and F(-) is the distribution of random
preference to product attributes and price ¢; and the
random search cost term w;. This procedure is just
the maximum likelihood estimation (MLE) analogy
to the generalized method of moments (GMM) pro-
cedure proposed in BLP.

After we obtain the estimates of nonlinear pa-
rameters (:)1 from the first step, we compute the mean
utilities at the estimated value of & = §(0;). In the
second step, we estimate 0, from Equation (3). We
construct instruments in a similar spirit to Gandhi

and Houde (2017). For a given car characteristic, we
take the squared difference of a particular product
with the average characteristic in that product’s cluster.
We also take this difference with respect to the av-
erage characteristic in the entire state of Ohio. Let Z
denote the vector of all excluded variables including
car characteristics x;;, L instrumental variables, dealer
fixed effects, and year dummy variables. Our em-
pirical moment conditions for the second stage are

1
GN(GZ) = ﬁz Z Ej'ftzjft/ (12)
ift

where N is the number of product-dealer-year-level
observations.

Notice that the estimation errors of the first-stage
estimation will be carried into the second-stage es-
timation, implying that we need to correct the stan-
dard errors of the second-stage estimates. We correct
for this additional uncertainty in the second-stage
estimates and provide the derivation of the asymp-
totic covariance matrix of the second-stage estimates
in Appendix B.'” We use antithetic acceleration when
we simulate the integrals in the choice probabilities,
and we do not adjust the standard errors for simu-
lation bias (for details, see Stern and Zhou 2018).

4.1. Identification

In this section, we provide an informal discussion of
the model identification. First, we should note that we
do not claim to identify search, per se. In general, the
model is identified subject to all of the behavioral
and parametric assumptions. We do not formally test
the assumption cluster search against an alternative
assumption, for example, no search or per-dealer
search. The identification of the parameters in the
utility function is similar to the full-information BLP
models. They can be identified because we observe
different within-cluster market shares corresponding
to different product characteristics and different sets
of products available across clusters and over time.
Also, we also observe consumer-level choices, and the
variation in their within-cluster choices correspond-
ing to different product characteristics, consumer
characteristics, and choice sets also helps to identify
those parameters in the utility function.

To identify the price coefficients, we need to ad-
dress the classical endogeneity problem that arises
because dealers and consumers observe the unob-
served quality when making their decisions, and so
the average price will adjust to the changes in un-
observed quality. Relevant and valid instruments are
those variables that are correlated with prices and in-
dependent of unobserved transitory demand shocks.
Following Nevo (2001), Houde (2012), and Gandhi
and Houde (2017), we use deviations of particular
product characteristics from the averages of other
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products as instruments. Specifically, we include four
other groups of instrumental variables: (i) the de-
viations from the average characteristics of all other
product-dealer combinations available in the same
dealer cluster and in the same year, (ii) the squares of
the first group variables, (iii) the deviations from the
average characteristics of all other product-dealer
combinations in the same year, and (iv) the squares of
the third group variables. We display the results from
a regression of price on all of the exogenous vari-
ables in Appendix E. Most of the excluded variables
are highly significant, and the R* is 0.72.

The specific search mechanism is not identified per
se. Because we do not observe consumer choice sets
or search behavior, we cannot reject another search
model, for example, a full-information model or a
sequential search model, in favor of our model. Con-
ditional on our parametric assumptions about search,
the parameters in the search-cost function can be iden-
tified from covariation in individual distances and in-
dividual choices in the data. Consider two consumers
with similar preferences in product attributes and price.
They should have similar expected gain from each
search set Uj(S) and similar conditional purchasing
probabilities %;,js. The distance coefficients, A, can
be identified from the variation in their choices cor-
responding to their different distances to dealers and
their different demographics affecting their search
costs (HS,). The cluster size coefficient p is identified
from covariation in choices and the size of the chosen
dealer’s cluster. The identification of x comes from
the variation of individual choices among those con-
sumers with similar demographics and similar dis-
tances to dealer clusters. For example, if those con-
sumers make similar choices, then the variance of
their search-cost shocks x should be small. In this
sense, k plays a role similar to that of the nesting
coefficient in a nested logit model. As choice sets vary
across similar consumers, does the researcher observe
consumers making similar decisions or apparently
random decisions? The variance of ¢ is not identified,
as is typical in discrete choice models, and, in turn,
K is not separately identified from the variance of €.

The above argument of the identification of the
search-cost parameters relies on the assumption that
dealer entry, exit, and location choices are not cor-
related with the unobserved transitory demand
shocks, &, after controlling for dealer and time fixed
effects. Because we include dealer and year effects,
this assumption is valid if entry decisions are based
on the long-run store characteristics and aggregate
economic shocks, but not on the realization of the
transitory shocks &;s. This assumption is reason-
able in our context, because the sunk cost involv-
ing the entry, exit, or location change of a dealer is
substantial, partly because of regulations that limit

entry and exit. Forced exit of dealers by the manu-
facturer is very difficult in this industry because of
state laws requiring payments to dealers for the ter-
mination of franchise contracts. In addition, there
are other state laws that make entry and exit diffi-
cult, including mandated exclusive territories for
brands. For a discussion of the regulatory environ-
ment, see Lafontaine and Morton (2010) and Murry
and Schnieder (2016). Also, to the extent the local de-
mographics and population change over time, initial
decisions about entry may not reflect current demo-
graphics, population, or other transitory factors; see
Murry (2018) for evidence. As discussed in Section 2.2,
the number of dealers decreased by nearly 16% in Ohio
during the past financial crisis, creating sharp changes
in the structure of local markets. Importantly, these
changes were driven mainly by nationwide brand ter-
minations and dealer closures due to car manufac-
turers’ financial crises, and not by factors related to
local transitory demand conditions.

4.2. Model Estimates and Fit

Table 7 reports the estimates of all parameters in our
search model. As expected, the estimate of a™™ is
positive, implying that higher-income consumers are
less price sensitive. The implied consumer-model-
dealer-year-level own-price elasticities of demand
range from —10.73 to —1.38, with a sales-weighted
average of —4.05. This suggests that consumers are price
sensitive on average, but there is substantial heteroge-
neity. Overall, our estimates of price elasticities are con-
sistent with those of previous studies of automobile
demand. For example, the average own-price elasticity
is equal to —4.1 in Albuquerque and Bronnenberg
(2012), =5.3 in Murry (2015), and —3.14 in Nurski
and Verboven (2016). As expected, the average con-
sumer prefers cars with higher acceleration (horsepower
divided by vehicle weight) and higher miles per dollar.
Larger households like larger cars more. Consumers
that live in zip codes with higher rates of education
prefer U.S. brand cars less.

The distance coefficients have the expected signs
and are precisely estimated. The search cost is in-
creasing in the traveling distance. This relationship is
even stronger for households with higher income and
children, and also stronger for locations with more
urban areas and worse traffic conditions. The co-
efficient before the number of dealers in a cluster (p) is
almost zero and not significant at the 10% level. The
standard deviation of the search-set shock (x) is es-
timated to be 0.3716 and is estimated precisely.'® In
the following sections, we will further discuss the
implications of the estimated search costs.

To examine the fit of the model, we simulate the
choices of those buyers who we used to construct the
likelihood function in the first-stage estimation.
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Table 7. Model Estimates

Variable Coefficient Estimate SE

Utility parameters
Price ($10,000) a -1.4201 (0.0111)
Price x log(Income) aline 0.1224 (0.0169)
Price random effect o¥ 0.1338 (0.0429)
log(Acceleration) B 1.4064 (0.0324)
log(Car size) B2 8.355 (0.0559)
log(Miles per dollar) B> 1.0662 (0.0532)
Luxury brand Bs 0.8394 (0.0298)
U.S. brand Bs 0.3856 (0.0248)
log(Car size) x Household size 3 1.8612 (0.3883)
log(Miles per dollar) random effect fo 0.1814 (0.0991)
U.S. brand x College degree x -1.0692 (0.4201)
U.S. brand random effect o% 0.0425 (0.0535)
Constant Bo -6.9138 (0.2061)

Search parameters
Distance (100 miles) Ao 13.6687 (0.6776)
Distance x log(Income) A 0.4678 (0.1159)
Distance x Share of households with Children A -0.2601 (0.0174)
Distance x Share of urban area Ml 1.7977 (0.4901)
No. of dealers in cluster p 0.0014 (0.0020)
SE of consumer heterogeneity Oy 1.2209 (0.1348)
SE of search-set heterogeneity K 0.3716 (0.0376)

Notes. The estimation includes 101,371 model-dealer-year combinations, 9,415 zip code-year combi-
nations, 2,112 dealer cluster-year combinations, and 8,000 individuals. The mean utility function also
includes body style dummies, dealer fixed effects, and yearly dummies. The average transaction price is
measured in $10,000. Distance between a consumer zip code and a dealer cluster is measured in 100

miles. SE, standard error.

Figure 2 presents the cumulative distribution func-
tions (CDFs) of the model predicted purchase travel
distance and the distance observed in the data. Our
model predicts that the average distance is 7.42 miles
and the standard deviation is 4.81 miles, whereas
the average distance is 6.80 miles in our estimation
sample and the standard deviation is 5.20 miles.
A Kolmogorov-Smirnov test rejects the null that the
model predicted distribution is identical to the data.

We conjecture that the discrepancies of the two dis-
tributions are caused by the following reasons. First, we
restrict consumers to travel a maximum of 40 miles, but
this mileage limit may be different across different in-
dividuals. Consider a consumer who does not travel
more than 30 miles to buy a car. Suppose that within
40 miles of her residence, there are two dealers: one is
1 mile away and the other is 35 miles away. Because
she considers only dealers within 30 miles, she will
choose the first dealer for sure, and her traveling
distance in the data will be just 1 mile. However, the
model assumes that all consumers will consider all
dealers within 40 miles and it will predict positive
probabilities for both dealers, and as a result, her
predicted distance will be larger than her actual
distance. This can explain why the empirical CDF is
above the model CDF on the segment of small dis-
tance. Second, consumer search cost may not be linear
in the traveling distance. The distance function could
be concave, or more likely a step function. As a result, a

model with a linear approximation of the search cost
will overpredict the search cost when the distance is
large, and hence tend to predict that consumers travel
less than their actual distance on the segment of large
distance.

Figure 2. Predicted and Empirical Distributions of Traveled
Distance
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Notes. The solid line represents the cumulative distribution of the
actual traveling distance of the individual buyers that we used to
construct the likelihood function in the first-stage estimation. The
dashed line represents the cumulative distribution of their traveling
distance predicted by the model.
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4.3. Implied Search Cost

To get a sense of the economic magnitude of the pa-
rameter estimates, it is useful to consider how much a
product’s price needs to be lowered to compensate
consumers if they have to travel one more mile. To do
that, for each product, we first calculate the sales
change if it was one mile away from every consumer.
Then, we calculate how much the price would need to
belowered to compensate the same salesloss. Figure 3
demonstrates the distribution of dollars per mile. Our
results suggest that the average value is $45, and there
is substantial heterogeneity across individuals.

Our estimate of the travel cost is lower than those
reported in other studies that estimate consumer
distance costs in the new car retail industry. For ex-
ample, Moraga-Gonzalez et al. (2015), with the paper
closest to ours, report a median travel cost of €107 per
kilometer. The difference could come from two rea-
sons. First, Moraga-Gonzalez et al. (2015) consider the
market for cars in the Netherlands. It is reasonable to
think that search costs are higher in Europe because of
congestion and higher fuel prices. In general, there are
drastic lifestyle differences between Ohio and the
Netherlands, so it is not clear how these numbers
should be compared. Second, we observe individual-
level choices and the exact locations of the buyer and
seller, and hence our parameter estimates could reflect
important microlevel information captured in the co-
variation of distance and purchase probabilities.'”

Furthermore, we examine what the estimates imply
about consumers’ search intensity. In general, con-
sumer search is limited. Our estimates suggest that
among those consumers who search, 46.67% of them
search only one cluster, 34.41% search two clusters,
18.68% search three clusters, and fewer than 1% of
them search more than three clusters. These results
are consistent with industrial reports and previous

Figure 3. Distribution of Dollar Per Mile
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studies. For example, in a survey by DME Automo-
tive, an industry consulting group, 47% of all new
car buyers visited a single dealer before purchase.®
Moraga-Gonzélez et al. (2015) report that 47% of
survey respondents in their consumer survey data
searched one dealer. Although our model does not
have empirical content regarding specifically how
many dealerships are searched because search happens
at the dealer-cluster level, we can at least say that
searching two or more clusters implies searching at least
two dealers, and so our estimates of consumer search in-
tensity could be consistent with those of other sources.

5. Counterfactual Experiments

In this section, we use our estimation results to
conduct two sets of counterfactual exercises. The goal
of our first set of counterfactual exercises is to un-
derstand how search frictions affect the market out-
comes. We examine how the market outcomes change
when we change the values of those key parameters in
the search-cost equation while keeping other pa-
rameters unchanged. In the second set of counter-
factual exercises, we examine the impact of dealer
closure on remaining dealers. In particular, we de-
compose the total effect of a dealer closure into an
agglomeration effect and a competition effect. Sim-
ulating a dealer closure is not only a clear way to
decompose the competition and agglomeration forces
at work in the model; it also is a highly policy relevant
exercise. As discussed in Section 2.2, the recent U.S.
financial crisis of 2007-2009 saw many retail exits;
however, the microeconomic effects of retail closure,
the agglomeration effect in particular, have not been
well documented. To do both types of counterfactual
exercises, we first specify a supply-side model to
describe the price setting of car dealers. This allows us
to recover marginal retail costs and evaluate changes
to market outcomes, including optimal prices, in
counterfactual environments.

5.1. Retail Pricing

We assume that car dealers, which are multiproduct
firms, play a static Nash—Bertrand pricing game by
simultaneously setting the retail price for each of their
cars in each year.'” The total variable profit of dealer f
is defined as

T(f(Pt) = Z(pjft - mc]ft)%’f(pt)/
j€Is

where mcjs; is the constant marginal cost of product j
sold by dealer f in year t. This marginal cost represents
the wholesale (or “invoice”) price of the car, along
with other variable costs or benefits associated with
car retailing, including the future warranty and ser-
vice contracts for the car and the opportunity costs
of the inventory management problem faced by the
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dealer. See Albuquerque and Bronnenberg (2012) and
Murry (2015) for a discussion of wholesale prices and
retailing costs.

Dealers simultaneously set prices to maximize their
own profits, taking into account prices and attributes
of competing dealers. The first order condition for a
particular dealer that defines a Nash equilibrium in
prices is

(p))
qr(p) + > (pis — m%)gpf 0. (13)
Pjft

Jelp

Let A denote the demand price derivative matrix with
the row k = (j,f) and column k’ = (j/,f") element:

Ipjpr
S / (& + 0"y P (1 — Progp)dF-(),
Z ifk =k,
~> by / (@ + Q") P oy Proy rdE (),
Z ifk#K.

We define an ownership matrix Q*, with Q(j, /)" = 1if
product j and j* are sold by the same dealer and 0
otherwise. Let Q = Q" X A(p). Then, Equation (13) can
be written in matrix notation as the following markup
equation:

p —mec=Q7"q(p). (14)

From Equation (14), we compute the price-cost
margins for each product sold by each dealer in
each year, using the estimated demand parameters in
Table 7. Figure 4 displays the distribution of dealer
markups, defined as the ratio of price-cost margin
over price. The weighted average markup (price-cost

Figure 4. Predicted Dealer Markup (Percentage)
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margin) is 29% and the median is 28%. These results
are in line with other studies of the automobile in-
dustry, for example, 24% in Berry et al. (1995), 17%
in Petrin (2002), $6,220 (price minus marginal cost)
in Albuquerque and Bronnenberg (2012), $5,238 in
Murry (2015), and 43% in Nurski and Verboven (2016)
and Moraga-Gonzélez et al. (2015).

5.2. Impacts of Search Frictions

To quantify the impact of search frictions, we simulate
the market outcomes assuming that consumers have
full information along with the estimated preference
parameters in Table 7. One way to do this in our model
is the following: recall from Section 4 that when y =0,
p =0, and x =1, the individual choice probabilities
from our search model are equivalent to those from
a full-information model with a mean utility from
outside option being log(2). Using this logic, our
simulation results imply that in the full-information
case, the total sales will be 33% higher than the sales
predicted by our search model, and the weighted
average price will be $333 lower. Figure 5 presents
the distribution of the difference between the product-
dealer-year level price predicted by the full-information
model and that predicted by the search model. The
standard deviation is $367, indicating that the price
impacts caused by the search frictions are significantly
different across products and dealers.

Next, we simulate the equilibrium price and sales
by varying features of the search cost: the effect of
distance,y, the standard deviation of search-cost
shocks x, and the dealer-cluster size coefficient p,
while holding other model parameters at their esti-
mated values in Table 7. We report the price and sales
impacts in Table 8 and Table 9.

In panel A, we report the results when we scale y
from the estimated values from 0 to twice while
keeping other parameters equal to their estimates.

Figure 5. Price Difference in a Full-Information Model
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Table 8. Price Difference by Varying Search Cost Parameters

Panel A. Varying y Panel B. Varying x

Panel C. Varying p

Scale of #  Mean ($) SD ($) Scale of & Mean ($) SD (%)

Value of p Mean ($) SD (%)

0 ~109 (216) 0.1 +104 (281) 0.1 143 (127)
0.25 -90 (181) 05 +53 127) 0.2 244 (199)
0.50 -61 (130) 15 -28 (68) 0.3 314 (259)
0.75 -29 67) 2 —44 (105) 04 365 (306)
1.25 +26 (65) 25 —54 (128) 05 404 (344)
1.50 +49 (123) 3.0 -60 (143) 0.6 438 (377)
1.75 +69 175) 35 -64 (154) 0.7 460 (404)
2 +84 (218) 4 -68 161) 0.8 481 (427)

Notes. Price difference is the difference in the sales-weighted average price between a model with the
stated parameter changed and a model with all parameters equal to their estimated values reported in

Table 7. SD, standard deviation.

The weighted average price will be lower (higher) and
total sales will be higher (lower) as we scale down (up)
y. This is expected, because a higher y discourages
consumers from visiting those dealers that are farther
away from their residence and leads to greater local
monopoly power, and hence higher prices, for dealers
because nearby residents are more captive.”’ In par-
ticular, when consumers’ disutility from distance dou-
bles the estimated value, the weighted average price
will be $84 higher and the total sales will be 32% lower
than the predicted when y equals the estimated value.
The standard deviation of the price difference is $218,
indicating a significant heterogeneity across products
and dealers. In contrast, when consumers have no dis-
utility from distance, the weighted average price will be
$109 lower and the total sales will be 38% higher than in
the case when y equals the estimated value.

Panel Breports the price and sales impacts when we
scale x from 0.1 to four times of the estimated value
while keeping other parameters equal to their esti-
mates. The weighted average price will be higher
(lower) and the total sales will be lower (higher) when
we scale down (up) x, which is consistent with our
analysis in Section 3.4. A larger x implies more ran-
domness in consumers’ choice of which clusters to

search. Consequently, a dealer’s location is less rel-
evant in consumers’ choice, and this reduces dealers’
local monopoly power. For example, compared with
the predicted price and sales with « at its estimated
value, the weighted average price will be $68 lower
with a standard deviation of $161, and the total sales
will be 17% higher, when « is four times of its esti-
mated value. In contrast, when x is 0.1 of its estimated
value, the weighted average price will be $104 higher
with a standard deviation of $281, and the total sales
will be 10% lower.

Panel C reports the results when we set p (the co-
efficient before the number of dealers in a cluster) to
various values from 0 to 0.8. A larger p implies that
consumers pay larger search costs, resulting in less
search, worse matches, and lower sales. Moreover, a
larger p discourages consumers from traveling to
search those larger but farther clusters, leading to
greater local monopoly power and hence higher
prices for nearby dealers. The effect of the higher
prices reinforces the decrease in total sales. For ex-
ample, when p equals 0.2, the weighted average price
will be $244 higher with a standard deviation of $199,
and the total sales will be 66% lower, than that when
p equals its estimated value.

Table 9. Total Sale Change by Varying Search Cost Parameters

Panel A. Varying y

Panel B. Varying x

Panel C. Varying p

Scale of 7 Change (%) Scale of & Change (%) Value of p Change (%)
0 +38 0.1 -10 0.1 —44
0.25 +31 0.5 -7 0.2 -66
0.50 +22 1.5 +6 0.3 -78
0.75 +11 2 +10 0.4 -85
1.25 -10 25 +13 0.5 -89
1.50 -18 3.0 +15 0.6 -92
1.75 -25 35 +16 0.7 -94
2 -32 4 +17 0.8 -95

Note. The total sales change is the change of the total units sold predicted by a model with the stated
parameter changed from that predicted by a model with all parameters equal to their estimated values

reported in Table 7.
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5.3. Single Dealer Closure

Next we use our structural model to study the effects
of closing a single dealer. As we have discussed above,
our proposed model implies that closing a dealership
generates two effects to the remaining dealers located
in the same cluster. On one hand, a closure may reduce
the total attraction of the cluster, and thus reduce the
sales of other dealers in this cluster through decreased
consumer search. This effect puts pressure on dealers
to reduce their prices to counter the negative impact
of reduced search because lower prices attract more
searching consumers. This is the agglomeration effect.
On the other hand, closing a dealer will directly reduce
the price competition among dealers in the same cluster
and create an incentive for higher equilibrium prices.
This is the competition effect.

5.3.1. Detailing Two Large Dealers. We consider a
hypothetical scenario in which a single dealer was
closed in 2007. The two dealers we consider are two
of the largest dealers in 2007, labeled dealer A and
dealer B. Dealer A’s share in its cluster was between
10% and 20%, whereas dealer B’s share in its cluster
was above 50%.”' To separately quantify the ag-
glomeration and competition effects of dealer colo-
cation we simulate changes to equilibrium prices and
sales for the following three scenarios. In the first
scenario, we quantify the agglomeration effect by
allowing consumers to respond to the dealer closure
by adjusting only the choice of each search set (P;,s),

Table 10. Impacts of Closing One Dealer

but not the choice probability of purchasing each product
conditional on a search set (%;;q5). In this scenario, re-
tailers adjust their prices only to attract new searchers to
their dealer cluster, but not to compete against a rival in
the same geographic cluster. In the second scenario, we
quantify the competition effect by allowing consumers to
respond to the dealer closure by adjusting only the choice
of car conditional on a search set (?;s), but not the
choice of clusters to search (P;.s). Accordingly, retailers
will adjust their prices to compete with local rivals but
not to attract more consumers to search their geo-
graphic cluster. In the last scenario, we allow con-
sumers to respond to the closure by adjusting both
their choice sets and the choice of car conditional on
the choice set, which quantifies the total effect.
Table 10 reports the impacts of closing a dealer on
the price, total sales, and total profit of two groups of
dealers. The first group of dealers are those that are
colocated with the closed dealer, and the second
group includes all other dealers that are not located in
the cluster where the closed dealer was located. In
each counterfactual scenario, we simulate the equi-
librium price and sales and compute the profit for
each product-dealer combination. We take the dif-
ference of the simulated price over the observed
price for each product-dealer. Then, we compute
the sales-weighted average and standard deviations,
and we report the results in the first and second
columns. We also compute the total sales and total
profit in the counterfactual scenario and report the

Price ($)

Total sales (%) Total profit (%)

Panel A. Closing dealer A

Colocated dealers

Agglomeration effect -8.78 (5.16) -10.94 -11.05
Competition effect +10.93 (5.52) +8.80 +8.97
Total effect +1.06 (0.24) -3.15 -3.14
Noncolocated dealers
Agglomeration effect +0.46 (1.95) +0.28 +0.27
Competition effect +0.17 (0.89) +0.17 +0.16
Total effect 0.62 (2.66) +0.43 +0.42
Panel B. Closing dealer B
Colocated dealers
Agglomeration effect —40 37) -26.42 -26.08
Competition effect +502 (206) +87.08 +97.43
Total effect +451 (131) +34.29 +41.05
Noncolocated dealers
Agglomeration effect +5.05 (21.44) +0.49 +0.55
Competition effect +3.14 (19.54) +0.28 +0.32
Total effect +8.03 (37.08) +0.71 +0.82

Notes. The first column reports the sales-weighted average of the price difference at the product-dealer
level between the counterfactual scenario and the data. The second column reports the standard de-
viation of that price difference. The third column reports the difference in total sales between the
counterfactual scenario and the data. The forth column reports the difference in total profit between the
counterfactual scenario and the data.
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differences over the observed ones in the third and
forth columns.

Because of the agglomeration effect, closing dealer
A or dealer B will reduce the total attractiveness of
the cluster and hence reduce the total sales of other
colocated dealers (by —10% and —26%, respectively).
Moreover, the closure will also induce the colocated dealers
to reduce their prices to counter the reduced attractiveness
of the cluster (by —$8 and —$40, respectively). There-
fore, our results imply that in both cases of closing
dealer A and closing dealer B, the agglomeration
effect is positive, that is, the cluster of the closed
dealer will be less likely included in consumers’
search set. On the other hand, because of the com-
petition effect, colocated dealers will be able to charge
higher prices and sell more when a nearby rival exits.
Other dealers not located in the same cluster will
benefit from the closure both because their clusters
become more attractive to consumers to visit and also
because the competition becomes less intense. Un-
surprisingly, the effects on nonlocated dealers are
much smaller than on those colocated dealers.

Moreover, because dealer B plays a larger role in its
cluster than dealer A, closing dealer B will have larger
impacts on colocated dealers through both agglom-
eration and competition effects. Taking these two
effects together, closing dealer A has a net negative
effect on the incumbent dealers, suggesting the ag-
glomeration effect dominates in this case. However,
closing dealer B will slightly benefit the colocated
dealers, suggesting the competition effect dominates
in this case.

5.3.2. Overall Effects of Single Dealer Closures. Next,
we close all dealers that existed in 2007, one at a time.
This exercise informs us of the distribution of effects
that could happen across different types of dealers, if
they were to close. For example, we would expect the
agglomeration effect to be different for a small dealer
with few neighbors than for a large dealer with many
neighbors. To do this, we simulate the equilibrium
market outcomes by closing one dealer at each time.
We do this separately for every dealer thatsold cars in
2007. In Table 11, we describe the total effect of the
closures by looking at the distribution across the

single closures. The average dealer in 2007 had 406
sales and sold cars at an average price of $29,142. On
average, closing a dealer results in a —3.42% decrease
in sales for the other dealers in the colocated cluster.
This suggest that dealer B, above, is a clear outlier,
with a large increase in affiliated-cluster sales. as for
theresults above, price changes are very small for any
dealer closure, and can be either negative or positive.
Most dealer closures result in the agglomeration ef-
fect outweighing the competition effect, as roughly
90% of dealer closures result in fewer sales for the
remaining colocated dealers. There are some dealer
closures that result in a substantial decrease in sales
for remaining neighboring dealers, with over 25% of
closures leading to greater than 4% fewer sales.

To gain a deeper insight into these results, we
correlate the closure effect with characteristics of the
closed dealer. In particular, we consider the size of the
closed dealer (total 2007 sales) and the relative im-
portance of the dealer in the cluster (own sales over
total cluster sales). The results are presented in
Figure 6. First, in Figure 6(a), the importance of a
dealer in a cluster is clearly negatively correlated with
achange in sales. The same is true with the dealer size
(unconditional on within cluster importance), shown
in Figure 6(b), although dealer B from above is clearly
an outlier, visible in the top right corner of panel (b).
The main takeaway is that if a dealer closes, the
neighboring dealers will be worse if the closed dealer
was relatively big within the cluster.

5.4. Terminations of Pontiac and Saturn

In this section, we focus on the termination of Pontiac
and Saturn in 2009. Because the brand terminations
were nationwide decisions, the dealer closures caused
by the brand terminations were plausibly not correlated
with the local conditions. We first simulate the market
price and sales for other dealers in 2007 by hypotheti-
cally assuming that the termination of Pontiac occurred
before 2007, and then compare the simulated outcomes
with the observed ones. We do the same simulations
assuming Saturn was closed in 2007. We decompose the
effect of closures in the agglomerations effect, compe-
tition effect, and total effect like in the previous exercise
in Section 5.3.

Table 11. Distribution of Effects After Single Dealer Closures

Mean SD Q25 Q50 Q75
Closed dealers
Total sales (2007) 406 404 142 286 519
Average price ($) 29,142 6,091 25,910 27,590 30,067
Colocated dealers
Total % change: Quantity sold (%) -3.24 4.06 —4.27 -1.90 -0.63
Total % change: Average price (%) -0.01 +0.09 -0.03 -0.01 +0.01

Note. SD, standard deviation; Q, percentile.



Downloaded from informs.org by [136.167.230.79] on 07 December 2022, at 07:13 . For personal use only, al rights reserved.

1928

Murry and Zhou: Consumer Search and Automobile Dealer Colocation
Management Science, 2020, vol. 66, no. 5, pp. 1909-1934, © 2019 INFORMS

Figure 6. Change in Sales of All Neighboring Dealers After Single Dealer Closures
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Table 12, panels A and B, reports the impacts of
closing Pontiac and Saturn on the price, total sales,
and total profit of the colocated dealers and non-
colocated dealers. On the one hand, the agglomera-
tion effect implies that those clusters would be less
attractive to consumers and hence would reduce the
total sales of those clusters. To counter this effect, the
colocated dealers in those clusters would cut their
prices. Our simulation results suggest that because
of the agglomeration effect, hypothetically closing

Table 12. Impacts of Brand Closures

Price ($) Total sales (%) Total profit (%)

Panel A. Closing Pontiac

Colocated dealers

Agglomeration effect 19 (62) -2.14 -2.31

Competition effect +2 (51) +3.24 +3.20

Total effect -3 (58) +0.92 +0.87
Noncolocated dealers

Agglomeration effect +9 (10) +1.56 +1.68

Competition effect +7 (6) +1.46 +1.54

Total effect +15 (15) +2.90 +3.10

Panel B. Closing Saturn

Colocated dealers

Agglomeration effect —-10 (17) —4.44 -4.57

Competition effect +15 (18) +4.49 +4.70

Total effect +5 (16) -0.24 -0.17
Noncolocated dealers

Agglomeration effect +6 (7) +1.35 +1.39

Competition effect +3 (4) +1.18 +1.20

Total effect +9 (10) +2.42 +2.48

Notes. The first column reports the sales-weighted average of the
price difference at the product-dealer level between the counterfac-
tual scenario and the data. The second column reports the standard
deviation of that price difference. The third column reports the dif-
ference in total sales between the counterfactual scenario and the
data. The forth column reports the difference in total profit between
the counterfactual scenario and the data.

(b)
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-20
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Pontiac would induce the dealers colocated with
Pontiac dealers to cut their prices by $19 per car on
average. Their total sales would be 2.14% lower, and
their profit would be 2.31% lower. Meanwhile, the
weighted average price, total sales, and profits of the
dealers in other clusters would be higher, because
those clusters would become more attractive to
consumers. In the counterfactual scenario of closing
Saturn, the colocated dealers suffer even more and the
noncolocated dealers benefit less, indicating that the
agglomeration effect is stronger in this counterfactual
scenario. In short, we find that the agglomeration
effect is positive in both counterfactual experiments
of Pontiac closure and Saturn closure. Therefore, a
full-information model that ignores the agglomeration
effect would definitely overstate the positive impact
of dealer closure on remaining colocated dealers.

On the other hand, closing a brand benefits colo-
cated dealers because fewer competitors implies larger
market power and more sales. In the counterfactual
scenario of closing Pontiac, those colocated dealers
would slightly increase their prices, and their total
sales would be 3.24% higher. As a result, their profit
would be 3.2% higher. Meanwhile, those noncolocated
dealers would be also better off because of the lower
competition, although they would benefit less than
the colocated dealers would. Similarly, colocated
dealers and noncolocated dealers are better off when
we hypothetically close Saturn.

Taking these two effects together, closing Pontiac
would make the colocated dealers slightly better off,
whereas closing Saturn would slightly reduce the
total profit of the colocated dealers. Our results imply
that the competition effect dominates when Pontiac is
closed, whereas the agglomeration effect dominates
when Saturn is closed. This is quite different from the
findings of other studies on dealer closures following
the financial crisis. For example, Ozturk et al. (2016)
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found evidence that the competition effect dominated
when Chrysler closed dealers in 2010. Benmelech et al.
(2014) documented massive retail exits during the fi-
nancial crisis, for financial reasons such as bankruptcy,
and found evidence for an agglomeration effect of
dealer closure.??

The difference in the results between Pontiac and
Saturn is intuitive given that these brands had much
different retailing arrangements. In Ohio, 16 out of
20 dealers selling Saturn were single-brand dealers,
whereas 18 out of 76 dealers selling Pontiac were
single branded. Partly because of that, Saturn dealers
were of more importance within the clusters where they
were located than Pontiac dealers. For example, Saturn’s
actual sales accounted for more than 12% of all sales in
their clusters, whereas Pontiac’s within-cluster share
was 8%. As aresult, closing Saturn would have larger
impacts on colocated dealers both through the ag-
glomeration effect and through the competition
effect, which is shown in Table 12. Moreover, the
agglomeration effect would outperform the competition
effect on colocated dealers if Saturn were closed.

6. Conclusion

In this paper, we present a structural model of con-
sumer search for spatially differentiated products
in the new car retail industry. The model explicitly
captures the agglomeration and competition effects of
retail colocation. We estimate the model using de-
tailed data on all new car transactions in a single U.S.
state. Our approach contributes to the literature on
consumer demand with limited information and the
literature on retail agglomeration.

Our results indicate that consumers’ search cost is
$45 per mile on average, and because of their sub-
stantial search cost, half of them only search one geo-
graphic cluster before purchase. We also show that the
average price-cost markup is $333 higher in the presence
of search frictions. Moreover, our counterfactual anal-
ysis suggests that both the competition and agglom-
eration effects matter after a dealer closure. We show
that the agglomeration effect becomes stronger when
consumers get larger disutility from traveling dis-
tance or when their choice of which cluster(s) to search
becomes less random. In general, the results suggest
that whether the agglomeration effect outweighs the
competition effect largely depends on the substitu-
tion patterns across dealer clusters. We think this in-
sight is an important result that can help inform policy
makers and managers about the effects of colocation and
contagion of retail closures.

Our main finding is that the agglomeration effect
is positive: there are negative effects on dealers of a
colocated dealer closure. Because competition also

plays a role, we find cases where there exist only
moderate negative net effects of closures on colocated
dealers, and some cases where the competition effect
dominates and closures are a net positive for colocated
incumbents. However, our finding that the agglomera-
tion effect could dominate the competition effect has
important implications for policy makers and managers.
For example, our results rationalize the colocation of
rivals and suggest that colocated stores act (partially) as
complements, and as such, rivals may not want to force
closures. Also, the results suggest that if the agglom-
eration effect dominates, then local governments that
often help organize retail landscapes should be
worried about closure spirals, as each retail closure has
a net negative effect on remaining stores.

To be sure, our analysis relies on particular as-
sumptions. Although we are confident that our model
captures the major features of this industry, some caveats
are worth mentioning. First, although the evidence we
present suggests dealer agglomeration is an important
consideration during consumers’ car-buying process,
the search process in reality may be more complicated
than our model presents. In particular, the recent
proliferation of car-buying websites that aim at pro-
viding consumers with more information has likely
started to change the way consumers search for cars.
However, cars are experience goods, so websites
could never fully inform a consumer completely about
the utility, as personal interaction can. Second, con-
sumers may search in a more complicated way, for
example, nesting geographical concerns with the
search for a dealer (as in Moraga-Gonzalez et al.
2015) and the search for a car type. Because we do
not observe search behavior explicitly, we are unable to
separately identify different search mechanisms. Third,
although we present a demand-driven reason for dealers
to colocate, there are likely cost-driven reasons, for ex-
ample, land prices, zoning, and management conve-
nience for multidealership dealer conglomerates. Our
analysis is not a full equilibrium analysis of retail location
decisions and cannot be used to balance all the trade-offs
associated with the optimal location decision. Instead, we
focus on identifying the importance of demand-side mo-
tives that have been identified in the theoretical litera-
ture as being important determinants of colocation.
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Appendix A. Proofs of Proposition 1 and 2

Proof of Proposition 1
Without loss of generality, we will show that the proposition
holds for cluster 1.

The probability of visiting a firm in cluster 1 is
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First, the above inequality holds when p = 0. Second, the
left-hand side is clearly above the right-hand side when p
goes to infinity. Third, the left-hand side is an increasing
function of p. Hence, there must exists a positive cutoff p*
such that as long as p<pj, 572 >0, and hence d(@l‘;—ﬁm) >0;
d(%;igm) < 0. Moreover, it is

easy to show that the cutoff pj is decreasing in n; and .

otherwise, ;TFl <0, and hence

Proof of Proposition 2

First, we can easily show that

that‘w%?l“)>0 as k — 0.
We take partial derivative of the agglomeration effect
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Appendix B. Derivation of the Second-

Stage Estimates

First Stage

Estimated nonlinear parameter 6; maximizes the log-
likelihood function in Equation (10). Asymptotically,

VN1(01 - 61) ~ N(O, T).

Then, we obtain the estimated mean utility 8, which is a
function of estimated nonlinear parameters 0;, denoted by
0 =g(01).

Let C(6) denote the variance—covariance of 6. It is

g0
020,

9g(01)

20, E

C©) =

Here, g(.) can be obtained from the contraction mapping
I'(6, 61) = 0 that sets the predicted market shares equal to
the observed market shares. Therefore,
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Appendix C. (Color online) Spatial Distribution of Ohio Dealer Clusters
(a)

DBSCAN Clustering (0 = 0.04, MinPts = 2)
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Note. The open circles indicate single-dealer clusters, and the colored crosses indicate multidealer clusters.
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Appendix D. (Color online) Dealer Clusters in Four Ohio Locations
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Second Stage
Estimated linear parameter 6, solves the moment condi-
tions (12). Asymptotically,

VN2(6 - 0,) ~ N(0,Q),

Mansfield, OH

where Q is the corrected covariance-variance of 0,. Let C(&)
denote the covariance—variance of &. Then,

Q = (X'PzX)"' X' Pz[C(&) + C(6)]P, X (X' P4 X) 7,

where Pz = Z(Z'Z)7'Z’ is the projection matrix.
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Appendix E. First-Stage Price Regression
Exogenous variables
Variable V1 1v2 v3 Iv4
log(Acceleration) 3.4567 0.0073 -1.1521 —2.5431 2.2650
(0.1809)*** (0.0987) (0.1081)*** (0.2069)*** (0.1061)***
log(Car size) —0.6958 —0.1468 1.2764 3.6415 3.3798
(1.1531) (0.1704) (0.1525)*** (1.1667)*** (0.1463)
log(Miles per dollar) -0.5109 -0.2047 0.0207 —0.2437 -0.0279
(0.0608)*** (0.1502) (0.1505) (0.1610) (0.1473)
Luxury brand 4.8530 —-0.0139 —0.2454 —4.4358 0.8730
(0.4045)*** (0.0513) (0.0325)*** (0.3782)*** (0.2073)***
U.S. brand —2.1417 -0.1679 —0.0913 2.3655 0.9695
(0.1540)*** (0.0326)*** (0.0223)*** (0.1543)*** (0.0994)***
Overall R* = 0.7131
Weak identification test: Cragg-Donald Wald F statistic = 1,273.077
Overidentification test: p-value = 0.0000
Notes. The table shows dealer fixed effect regression of price at the product-dealer-year level on the
exogenous variables, including log of acceleration, log of car size, log of miles per dollar, luxury brand,
U.S. brand, body style dummies, yearly dummies, and instrumental variables. Log of acceleration, log of
car size, and log of miles per dollar are normalized. 1V, instrumental variable. IV1 values are the de-
viations from the average characteristics of product-dealer combinations available in the same dealer
cluster and in the same year, IV2 values are the squares of IV1 values, IV3 values are the deviations from
the average characteristics of all product-dealer combinations in the same year, and IV4 values are the
squares of IV3 values. There were 101,371 product-dealer-year-level observations. R? = 0.71.
Endnotes 8In principle, DBSCAN can handle these isolated dealers and classify

' The model that we present and the subsequent results rely on the
assumption that consumers search all dealers within a cluster. This
assumption could be relaxed in future work with appropriate data.

2We should note that we do not explicitly test our assumption of
cluster search and that our estimates come from a model that is
identified subject to all of the behavioral and parametric assumptions
we make. However, we do provide descriptive results that suggest
dealer clustering and consumer travel are important features of this
market in Section 2.

®In an updated version of their paper, Moraga-Gonzalez et al. (2017)
estimate a sequential search model using the same automobile data.
One innovative result from their exercise is that their expression for
choice probabilities looks very similar to the expression in the case of
simultaneous search.

*1It is common in the literature to consider pickup trucks a different
market. Additionally, some models of pickup trucks have dozens of
trim levels that vary widely in price and characteristics, making it
problematic to aggregate to the model level.

5Luxury brands include Acura, Audi, BMW, Buick, Cadillac, Infiniti,
Lexus, Lincoln, Mercedes-Benz, Porsche, and Volvo. U.S. brands include
traditionally U.S. brands that are no longer U.S. owned, like Chrysler.

®GSaab, the major Swedish-produced car brand, was owned by
General Motors until 2011. After 2011, the company reorganized, and
it started producing cars again in 2014.

" Both companies, along with Ford Motors, had a clear policy to create
smaller dealer networks, but were generally unable to do so because
state regulations prohibit dealer franchise contract termination by
manufacturers in the automobile industry. Dealers lobbied against
dealer closures, citing existing state regulations that prohibit closures.
Many of the proposed closures (from both of the reasons stated
above) went into legal arbitration. For example, when GM closed the
Oldsmobile brand, they reportedly paid over $1 billion to their dealers.
For a deeper discussion of the political economy, see Lafontaine and
Morton (2010). For example of popular press coverage of dealer closures,
see Terlep (2009).

them as noise, but the algorithm was much more robust to parameter
choices when we preclassified isolated dealers in this manner. We use
only the latitude and longitude of dealers to classify them into groups.
Like other classification algorithms, we could add other geographic
features to the classification objective, and ideally one would use
travel patterns data to train the algorithm. The advantage DBSCAN
has over k-means clustering, for example, is that there is no need to
specify the number of clusters ex ante. In practice, we use the Eu-
clidian distance and set € = 4 kilometers and the minimum number of
points equal to two. See Ester et al. (1996) or various programming
languages’ implementations (e.g., the “sklearn.cluster” package for
Python) for more details of the algorithm.

9Recen’dy, Moraga-Gonzalez et al. (2017) showed that a version of
sequential search can be operationalized in an empirical model of
differentiated product demand in a way similar to that used in
previous papers that used simultaneous search, including their own
earlier manuscript, Moraga-Gonzalez et al. (2015).

""We use the product-dealer-year-level average price mainly for two
reasons. First, new car retail prices are always set through negotiation
and hence may vary across dealers and across consumers. Modeling a
bargaining protocol between consumers and dealers would severely
complicate our search model, and we are not aware of other research
that models search and negotiation in a differentiated product set-
ting. Second, the use of individual prices directly would introduce a
missing data problem. Because car prices are typically negotiated, we
observe only the price of the car that a consumer eventually bought
but not the prices faced by the consumer for other cars considered but
did not purchase. Therefore, some assumption on the data-generating
process for individual prices would be needed to estimate price
elasticities.

" There are two types of consumers who do not purchase: those who
do not search at all and those who search and choose the outside
option. If a consumer does not search at all, her search set is an empty
set. In this case, her expected gain is zero, and her search cost equals a
random variable, ;. As long as a consumer does not search an
empty set, she will get an expected gain U;(S) and pay a search cost
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Ciz(S). Here, the expected gain Uy, (S) includes the possibility that she
ends up not buying. In particular, as we assumed, the utility from the
outside option is ¢;0;. Not searching and not buying are treated the
same in the sense that both options are assumed to have mean zero
utility. With data on failed searches, we could credibly separately
identify the two means from each other, for example, as is done in
Moraga-Gonzalez et al. (2015).

"2 The specification is also similar to the limited information model in
Sovinsky Goeree (2008), however, in that model choice sets are ex-
ogenous to the consumer.

'3 A particularly interesting case is when y =0, p =0, and « = 1. Let
¥ denote the set of search sets that includes the dealer f’s cluster. The
individual choice probability in this particular case is

) - exp(Oj + Uizjp)
gp;‘z}ff = S% @iz/ft\s@izst = %m
B 2M‘1exp(§/ﬂ + izjft)
T oM 4 ZM’I[Z/'f' exp(Ops + Hizj'f't)]
B exp(0 + Wizjsr)
T n@) i p exp(Oppit + Hiz]"f’t)‘

Therefore, this case is equivalent to the standard full-information
model with mean utility from the outside option being In(2).

" This is a well-known property of variants of the logit discrete choice
model and has the flavor of “love of variety” in representative con-
sumer models. See Anderson et al. (1992) for details of welfare in
discrete choice demand models.

®We thank one of our referees for pointing this out.

'8 A previous working paper version of this paper used much fewer
data (four years in a single city in Virginia) to estimate the model, and
in that case, k was very weakly identified. This reinforces the idea that
variation in choice sets is crucial to identifying this parameter.

"7 Consider that a consumer bought a Toyota Camry. Because Moraga-
Gonzalez et al. (2015) do not observe which dealer the consumer
purchased from, they assume that she purchased it from the closest
Toyota dealer. In contrast, we incorporate exact purchase distance
information, which may show that this consumer actually pur-
chased from a dealer farther away than the closest Toyota dealer.
See Table 3 for details.

8See http: //www.dmeautomotive.com/announcements/1-in-6-car
-buyers-skips-test-drive-nearly-half-visit-just-one-or-no-dealership-prior
-to-purchase.

"9 Price here is the same concept as in the demand model: the average
price for each product at each dealer in each year. Because of our data
are at the transaction level, we can construct average prices for a
given model at a given dealer. Therefore, the price of a single product
differs across dealers.

L ess search also results in worse matches, which will put downward
pressure on prices, but we find that the information rents dominate.

2 Our point here is to illustrate how large the agglomeration and
competition effects can be if an “anchor” store closes. Of course, if a
small dealer is closed, both effects will be much smaller, although the
net effect could go either way.

2 For example, they document the complete liquidation of multiple
large retailers, including Circuit City, Linens n Things, and The
Sharper Image. Other large retail chains that experienced massive
closings because of financial trouble include Kmart and Sears.
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