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We present a directed search model of intermediaries’ dynamic inventory and revenue management. Search
frictions hinder instantaneous replenishment, prompting intermediaries to utilize dynamic inventory-based
pricing and ordering strategies. In equilibrium, when inventory is high, an intermediary posts a lower retail
price to speed up sales and depresses wholesale price to slow down purchases. We characterize the evolution
dynamics of inventory holdings and their steady-state distribution, and extend the model to multiunit whole-
sale orders, product differentiation, and heterogeneous intermediaries. Using data from used-car dealers, we
quantitatively evaluate the welfare consequence of used-car dealers’ inventory management practice.

1. introduction

Intermediaries play a prominent role in well-functioning markets. According to Spulber
(1996), about a quarter of U.S. economic activity has been contributed by intermediaries. A
common rationale of intermediation is to mitigate search frictions (see, e.g., Rubinstein and
Wolinsky, 1987; Gavazza, 2016), but intermediaries still face uncertain demand and uncertain
supply when search frictions cannot be fully eliminated. Such uncertainty leads to stochastic
misalignment between idiosyncratic demand and supply, necessitating intermediaries to hold
inventory and manage revenue through dynamic pricing policies. This observation presents a
challenge to canonical decentralized-market intermediation models, which do not account for
inventory management or its interaction with market frictions.

This article develops a tractable equilibrium model where intermediaries face search fric-
tions in both retail and wholesale markets and manage inventory. It highlights the interplay
between multiple important economic forces related to inventory management that have wel-
fare implications. The model generates inventory and price dynamics and distributions consis-
tent with real markets. As a demonstration, we calibrate the model to the used-car market to
measure important unobservable market characteristics, such as inventory costs and the quan-
titative importance of search frictions. We also quantitatively evaluate the welfare contribu-
tion of used-car dealers. Our empirical exercise generates two main findings. First, the welfare
contribution of dealers is significant, large dealers almost double the surplus in the trade for
used cars. Second, we find that actual inventory holding costs are small, and incentives for in-
ventory management come from search frictions and resulting uncertainty dealers have about
future tradings.
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We borrow elements from the directed on-the-job search literature à la Menzio and Shi
(2011) to model intermediaries’ dynamic inventory management and pricing in the presence
of market frictions in both demand and supply. Following the literature on frictional interme-
diation, we assume that it takes time for buyers and sellers to meet intermediaries in both
retail and wholesale markets. At any time, each intermediary decides on a retail price and a
wholesale price given its inventory level. Search is directed by prices in the following sense.
In retail markets, buyers observe all retail prices and decide the set of intermediaries to seek.
Analogously, in wholesale markets, sellers observe all wholesale prices and decide the set
of intermediaries to search for. The model shares some flavor of Chamberlin’s monopolistic
competition insight: each intermediary faces a downward-sloping demand curve in retail mar-
kets and an upward-sloping supply curve in wholesale markets, but each intermediary is neg-
ligible in the sense that it can ignore its impact on, and hence, reactions from, other inter-
mediaries, making each intermediary’s dynamic pricing and inventory management decision a
monopolistic control problem. Intermediaries face idiosyncratic uncertainty originating from
search frictions in both retail and wholesale markets; their individual inventory levels evolve
stochastically, resulting in cross-sectional heterogeneity. Despite this complexity, the model re-
mains tractable, enabling us to solve each agent’s equilibrium policy function separately and
characterize the inventory distribution’s law of motion and its stationary limit. This simple
structure makes the model an ideal platform to perform counterfactual experiments to under-
stand the transitory and permanent effects of various important shocks.

In equilibrium, an intermediary’s optimal pricing rules in retail and wholesale are determin-
istic functions of the inventory level. Pricing affects trading speed in respective markets and
thus has stochastic influences on future inventory level. When inventory level is high, the in-
termediary charges a low retail price to speed up sales, and it offers a low wholesale price and
waits for a willing seller. When inventory level is low, the intermediary charges a high retail
price and slows down sales, and it also offers a high wholesale price to replenish faster. That
is, the optimal retail and wholesale prices comove, and intermediaries profit from active price
adjustments to reduce idiosyncratic misalignment in demand and supply. Consequently, high
inventory is more likely to fall, and low inventory is more likely to rise. As such, each inter-
mediary’s inventory follows a controlled stochastic process, giving rise to a stationary cross-
sectional distribution in the steady state.

We consider a few extensions of the baseline model and show that the general insight ap-
plies in richer settings. In the extension that allows for multiple wholesale units, the familiar
(s,S)-rule for inventory acquisition policy naturally emerges in equilibrium. Other extensions
consider product or intermediary heterogeneity; the model’s tractability allows us to incorpo-
rate these features without altering the equilibrium structure.

As a demonstration, we apply our theory to used-car dealer inventory management and
pricing to illustrate how to use our model to perform quantitative analysis. We have the ac-
cess to data from an online used-car platform that contains weekly information of used-car
dealers’ inventories and list prices. To the best of our knowledge, we are the first to quanti-
tatively examine intermediaries’ inventory and pricing in a large decentralized market. The
used-car industry is a natural laboratory to study the relationship between inventory and pric-
ing in two-sided decentralized settings. Car dealers face inventory costs, dealers can adjust
prices quickly, the wholesale market is relatively liquid, and a majority of used-car sales hap-
pen through dealers with a magnitude of tens of millions annually.1 Moreover, the used-car

1 We do not consider adverse selection in this article. Although used cars are the canonical example of a lemons
market (Akerlof, 1970), there is more recent research that suggests asymmetric information problems are not severe,
particularly for late model vehicles—see Adams et al. (2011) and Biglaiser et al. (2020). Also, a literature on infor-
mational intermediaries demonstrates that, both theoretically and empirically, one of the most important functions of
car dealers is to mitigate (if not fully resolve) information asymmetry between buyers and sellers. See, for example,
Biglaiser (1993), Lizzeri (1999), Biglaiser and Li (2018), and Biglaiser et al. (2020). The basic argument is that deal-
ers have the expertise to effectively detect lemons, and they have the incentive not to sell lemons due to the standard
reputation concerns.
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industry is highly decentralized. Used-car dealers face substantial uncertainty and frictions in
both selling and buying cars.2

We detail how to identify the model primitives using panel data on dealer inventory and re-
tail prices. We calibrate the model to the most popular and relatively homogeneous car cate-
gory in our sample: four- to six-year-old nonluxury sedans. We allow for dealer heterogene-
ity and attribute the size difference among used-car dealers to differential characteristics such
as matching efficiencies and inventory costs, which are not directly observed. We also quan-
tify the welfare contribution of car dealers. We find that large dealers are able to create more
surplus than small dealers by facilitating more tradings, and the difference is mainly due to
their differential search and matching efficiency, not an inventory cost advantage. Finally, we
conduct experiments with the calibrated model by making a 10% permanent change to each
of the model parameters, one at a time, and analyze the transition dynamics of inventory
and price. First, transitions are sluggish due to the stickiness in inventory adjustments result-
ing from quantitatively important matching frictions. Second, most changes to the parameters
cannot rationalize the large changes to the used-car industry in the wake of the COVID-19
pandemic. Our conclusion is that the decreased inventory and increased prices in 2021 and
2022 were caused by decreased supply, as opposed to changes in matching efficiency, demand,
or inventory costs.

Related Literature and Contribution. Our article contributes to the literature on interme-
diaries’ role of mitigating search frictions. There are numerous theoretical studies on this
topic in various settings. See, for example, Rubinstein and Wolinsky (1987), Gehrig (1993),
Rust and Hall (2003), Duffie et al. (2005), Wright and Wong (2014), Nosal et al. (2019), and
Hugonnier et al. (2020, 2022). This theoretical hypothesis has also been supported by re-
cent empirical research. See, for example, Gavazza (2016) and Salz (2017). We recommend
Gavazza and Lizzeri (2021) for a comprehensive survey of this literature. Our novelty is to in-
troduce intermediaries’ inventory and revenue management and study (i) their implications
on individual-level inventory and price dynamics and (ii) their roles in shaping the cross-
sectional distributions and evolution dynamics in the aggregate. Our model offers new empir-
ical implications, such as the relationship between inventory and retail and wholesale prices,
and the comovement of the retail and wholesale price time series.

We are certainly not the first to add inventory to search models. Many previous studies fo-
cus on the scale effect of holding multiple inventories and the corresponding benefit to the in-
termediaries. For instance, Johri and Leach (2002), Shevchenko (2004), and Smith (2004) in-
troduce consumer preference heterogeneity and highlight the benefit of holding multiple units
of inventory to satisfy diverse preferences. In a recent paper, Rhodes et al. (2021) introduce
multiple products and study the optimal portfolio choice of intermediaries.

Although most previous studies adopt random search models and restrict their attention
to the steady state of the economy, our article explores a more tractable directed search ap-
proach à la Menzio and Shi (2011) that exploits directed search and block recursivity.3 This
tractability enables a straightforward characterization of the equilibrium inventory and price
dynamics and a transparent discussion of the main trade-off of inventory management in the
presence of search frictions both at and off the steady state. In addition, our model can eas-
ily accommodate rich heterogeneity and even aggregate uncertainty and transition dynamics,
making it a tractable tool for applications. Watanabe (2010, 2020) also investigates intermedi-
ation in directed search models. The former focuses on the endogenous emergence of special-
ized intermediaries, and the latter attributes intermediaries’ price premium to their inventory
capacity advantage over ordinary sellers. Both are purely theoretical studies assuming per-
fectly competitive wholesale markets, so intermediaries always carry inventory at capacity in

2 This is in contrast to new car dealers, who have long-term relationships with manufacturers and with much less
uncertainty regarding inventory.

3 This tractable framework has been successfully applied in various contexts. We refer readers to Wright et al.
(2017) for a comprehensive survey of the literature.
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equilibrium. Our article has a different focus, which is intermediaries’ endogenous inventory
dynamics and the implications. Therefore, a critical assumption of our model is a frictional
wholesale market, preventing intermediaries’ immediate inventory replenishment. Our frame-
work thus has realistic empirical implications, and we apply it to the used-car market to gain
insights to car dealers’ inventory management.

Our article also contributes to the literature on inventory management and pricing. Al-
though the idea to combine pricing and inventory management of consumption goods was
first proposed by Whitin (1955), few studies have been done to understand the impact of these
practices on equilibrium price dynamics and dispersion in a competitive environment.4 See
a recent survey by Chen and Simchi-Levi (2012). Also, there is a finance literature utilizing
the similar continuous-time Markov chain technique to discuss dealers’ optimal inventory-
contingent pricing in equity security markets. The focus is to understand the existence of ask-
bid spread and why securities’ transaction prices deviate from their fundamentals through the
lens of the inventory channel. Most papers focus on a monopolist dealer’s dynamic decision
problem, and the demand and supply of securities are often assumed to be exogenous. See,
for example, Amihud and Mendelson (1980), Stoll (1978), and Ho and Stoll (1981). One ex-
ception is Ho and Stoll (1983), which considers a model with two dealers trading two stocks.
The current article differs from these models by providing a tractable equilibrium search-and-
matching framework to study inventory management with multiple dealers and endogenous
arrivals of buyers and sellers. Our model can easily incorporate dealers’ heterogeneity and
conduct quantitative analysis, study the impact of search frictions in retail and wholesale mar-
kets, and analyze endogenous spill-over effects between the demand and supply sides. To the
best of our knowledge, our article is the first one that fills the gap between the literature on
dynamic inventory management and equilibrium search theory.5

Finally, our model generates price dispersion in a search-theoretic model of intermediates’
inventory management without any ex ante heterogeneity. The price dispersion emerges as a
pure-strategy equilibrium. It is an addition to the search-theoretic literature aiming to ratio-
nalize the well-documented empirical fact that observationally equivalent products are sold
at different prices in many industries. The literature typically (i) requires buyers with (essen-
tially) heterogeneous information (Burdett and Judd, 1983; Stahl, 1989) or sellers with het-
erogeneous cost or visibility (Reinganum, 1979) to generate price dispersion in mixed-strategy
equilibria,6 or (ii) relies on nonstationarity of search (Coey et al., 2020). See Kaplan and Men-
zio (2015) for a recent study and Baye et al. (2006) for a survey of the literature.

Organization. The rest of the article is organized as follows: Section 2 introduces the theo-
retical model. Section 3 characterizes the equilibrium and derives empirical implications. Sec-
tion 4 studies some extensions of the benchmark model. Section 5 calibrates the model us-
ing the data from used-car markets. Extensions of the baseline model are in Section 4. Sec-
tion 6 concludes. Omitted proofs are relegated to Appendix A.1. Supplementary empirical ev-
idences are provided in Appendix A.2.

2. model

2.1. Environment. We consider a continuous-time model with infinite horizon; that is, the
calendar time t ∈ R+. The economy is populated by buyers, sellers, and intermediaries.

4 One exception is the literature that combines demand uncertainty and costly capacity à la Prescott (1975) to gen-
erate price dispersion and inventory holding. See, for example, Bental and Eden (1993) and Deneckere et al. (1996).

5 Contemporaneous with our article, Yang and Zeng (2021) consider trade between dealers and dealers’ inventory
choices into the framework of Duffie et al. (2005) and explore the equilibrium multiplicity. Colliard et al. (2021) pro-
pose a stylized three-period dealer network model and examine the joint effect of dealers’ network connections and
inventory management on prices and allocations in over-the-counter markets.

6 The qualification “essentially” is added because the heterogeneous information structure can be endogenized by
adding a stage of costly information acquisition of homogeneous consumers as in Burdett and Judd (1983).
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inventory management in decentralized markets 435

2.1.1. Agents. There is a large pool of atomistic buyers and sellers. Each seller has a unit
supply of the indivisible (consumption) good, and he receives zero utility by consuming the
good by himself. Each buyer has a unit demand of the good, and by consuming the good, his
utility is u > 0. A buyer leaves the market after his demand is satisfied and a seller leaves
the market whenever his good is sold. To maintain the size of the potential buyers and sellers
pool, we assume that a new buyer (seller) arrives whenever an existing buyer (seller) leaves.
Despite gains from trade, buyers and sellers face some obstacles to trade, creating a role of
intermediaries. Our focus is to model the equilibrium intermediated transaction mechanism
where the consumption goods are delivered from sellers to buyers through intermediaries.

There is a unit measure of ex ante identical intermediaries (dealers), each of whom pur-
chases consumption goods from sellers in the wholesale market and sells goods to buyers in
the retail market. An intermediary can sell only if his current inventory is positive. The flow
cost of holding x units of inventory is c(x) for x = 0, 1, 2, . . .. The cost function c : N → R
is increasing with c(0) = 0, and the marginal cost c(x + 1) − c(x) weakly increases in x. All
agents are risk-neutral and share a common discount rate ρ > 0.

Let gt : N → [0, 1] be the probability mass function of the distribution of inventory hold-
ing across intermediaries at time t. Specifically, gt (x) represents the measure of intermediaries
who hold x units of inventory at time t. Therefore, gt (x) ≥ 0,∀t, x and

∑
x∈N gt (x) = 1,∀t. For

notation convenience, we use gt to denote the vector {gt (x)}x∈N for each t.

2.1.2. Markets. The retail market is organized in multiple submarkets indexed by the re-
tail price p ∈ R. In each retail submarket p, the ratio of buyers to intermediaries is denoted
by θ (p). Retail submarket p can therefore be viewed as a group of agents who wish to trade
at price p. Similarly, the wholesale market is organized in multiple submarkets indexed by the
wholesale price w ∈ R. In each wholesale submarket w, the ratio of sellers to intermediaries
is denoted by λ(w). Following Pissarides (1985), we refer to θ (p) and λ(w) as the tightness of
the corresponding retail and wholesale submarkets.

2.1.3. Search and matching. Search is directed in the sense of Moen (1997) and Acemoglu
and Shimer (1999). At each moment, an intermediary can choose to enter at most one retail
submarket and one wholesale submarket simultaneously. In this way, we capture the interme-
diary’s retail/wholesale pricing problem as a choice of the corresponding submarkets.

At each instant, a buyer sees all the retail submarkets (prices) and chooses to enter at most
one retail submarket to search for intermediaries. If he does not enter any retail submarket,
he receives a flow outside option κb > 0. That is, a buyer’s opportunity cost of searching in any
retail submarket for time length dt > 0 is κbdt. The outside option can be interpreted in many
ways. For example, one possibility is that the buyer searches in a decentralized market without
intermediation (via, e.g., Craigslist) to look for a seller, where he meets a seller at a rate that
is normalized to be 1 and receives an expected surplus κb from a meeting with a seller. Simi-
larly, a seller sees all wholesale submarkets (prices) and chooses to enter at most one whole-
sale submarket at each moment. If the seller does not enter any wholesale submarket, he re-
ceives a flow outside option κs > 0.7 For example, in a used-car setting, the seller’s outside op-
tions also include his flow utility from keeping the used car. See Subsection 2.2 for more dis-
cussion.

There are frictions in submarkets. In each submarket, the matching process is determined
by a matching function. Following the literature (see, e.g., Pissarides, 1985; Moen, 1997), we
assume that the matching function is homogeneous of degree 1 so that the matching pro-
cess in each submarket is fully determined by its tightness. Specifically, at each instant, an

7 The assumption that an agent can visit at most one submarket at each time can be relaxed. Alternatively, one can
allow a buyer or seller to visit n submarkets by foregoing a flow outside option nκi where i = b, s, and n > 0 is an inte-
ger that can be either exogenously specified or endogenously chosen à la Stigler (1961). In this case, the rate at which
the buyer or seller meets an intermediary is proportional to n as well.
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intermediary meets a buyer at Poisson rate φr(θ (p)) in retail submarket p. We further as-
sume that the function φr : R+ → R+ is bounded, twice-differentiable, strictly increasing, and
strictly concave, such that φr(0) = 0. On the other side of a retail submarket, a buyer makes
a contact with an intermediary at Poisson rate ψr(θ (p)) where the function ψr : R+ → R+
is twice-differentiable and strictly decreasing. Due to the homogeneity of the matching func-
tion, we have ψr(θ ) = φr(θ )/θ,∀θ > 0, which reflects the fact that the number of intermedi-
aries who meet buyers must equal the number of buyers who meet intermediaries. Finally, the
matching function satisfies limθ→∞ ψr(θ ) = 0, and limθ→0 ψr(θ ) = +∞. Similarly, in a whole-
sale submarket w, an intermediary meets a seller at Poisson rate φw(λ(w)) where φw : R+ →
R+ is bounded, twice-differentiable, strictly increasing, and strictly concave, such that φw(0) =
0. On the other side, a seller meets an intermediary at Poisson rate ψw(λ(w)) where ψw :
R+ → R+ is twice-differentiable and strictly decreasing such that ψw(λ) = φw(λ)/λ,∀λ > 0,
limλ→∞ ψw(λ) = 0, and limλ→0 ψw(λ) = +∞.

When an intermediary and a buyer meet in retail submarket p, the buyer buys one unit of
the good from the intermediary at price p. When an intermediary and a seller meet in whole-
sale submarket w, the seller sells one unit of the good to the intermediary at price w.

2.2. Discussion of Assumptions. Before moving forward, we discuss some assumptions.
First, we assume that search is directed, such that an agent is fully aware of the price and
the matching probability of each submarket. The model both captures search friction and also
preserves the familiar trade-off between transaction speed and price in a competitive environ-
ment. Specifically, we model an intermediary’s pricing decision as choosing which submarket
to enter. To sell faster, the intermediary has to enter a retail submarket with higher tightness,
implying a lower equilibrium retail price. Similarly, to buy faster, the intermediary has to enter
a wholesale submarket with higher tightness, implying a higher equilibrium wholesale price.
The assumption of observable prices is consistent with the idea that buyers shop online to dis-
cover prices. A buyer’s choice of submarket reflects the idea that a buyer understands that
transaction speeds vary with the listed price.8

As noted by Acemoglu and Shimer (1999) and Faig and Jerez (2005), the directed search
paradigm encompasses many reasonable possibilities. One possibility is that submarkets are
located in different places (malls, streets, or online platforms) and that in each submarket, the
good is required to be traded at an identical term. Agents are aware of the trading term in
each submarket and understand that better terms of trade are associated with greater degree
of congestion within a submarket. Another one is to think about a submarket as a set of trad-
ing opportunities with identical trading term and agents randomly select one of them as in the
frictional assignment literature (Peters, 1991, 2000; Burdett et al., 2001).

Second, we assume sufficiently large pools of potential buyers and sellers, so the entry of
buyers and sellers has infinite elasticity. This assumption is for simplicity. A straightforward
implication of this assumption is that buyers and sellers will break even and act myopically in
equilibrium, and so, the outside option parameters κb and κs capture the expected flow pay-
off of buyers and sellers, respectively. We view this modeling choice as a simple way to close
our partial equilibrium model that focuses on the dynamics of intermediaries instead of buy-
ers and sellers.9 In the quantitative exercise, these outside option parameters are shown to be
identified with limited data, and they serve as a natural baseline to gauge intermediaries’ wel-
fare contribution.

8 That being said, observing perfect price information is not essential for the negative relationship between price
and trading speed. One can obtain a similar trade-off in a random search model by introducing random utility (de-
mand curve) and production cost (supply curve) and analyze steady-state equilibria where the equilibrium inventory
distribution is constant over time. However, the directed search formalization, as discussed in Menzio and Shi (2011),
is necessary to make agents’ decisions independent of the distribution of inventory holdings. It makes our model suit-
able for considering the transaction dynamics of a permanent shock or the implication of aggregate uncertainty.

9 A similar modeling choice is used in canonical labor search model where firms’ intertemporal job posting trade-
off is trivialized and the focus is on the workers’ job search dynamics. See Pissarides (2000) for a textbook treatment.
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inventory management in decentralized markets 437

Third, we assume that an intermediary can order at most one unit at each moment. This as-
sumption can be relaxed. In Subsection 4.1, we extend our baseline model and allow a seller
to carry multiple units, and the outcome of intermediaries’ equilibrium policies resembles the
familiar (s,S)-rule and nonlinear pricing. Also, we assume a homogeneous product and ex
ante homogeneous intermediaries. The first assumption is made to emphasize the search fric-
tions resulting from the uncertainty about how quickly agents are matched. This is a deliber-
ate simplification to highlight our main mechanism. In the search theory literature, another
important source of search frictions comes from the uncertainty regarding the match quality
between agents and products, which can also be accommodated by a stylized extension of our
model (see Subsection 4.2). The extension on vertical product differentiation is also discussed
(see Subsection 4.3). We assume that intermediaries are ex ante homogeneous to highlight
the contribution of the ex post inventory dynamics to price dynamics and endogenous cross-
sectional heterogeneity. This assumption leads to a common optimal inventory-based pricing
policy among intermediaries. It is straightforward to extend our model to allow for ex ante
heterogeneous inventory-price relationship (see Subsection 4.4).

Finally, we fix the measure of intermediaries but endogenize buyers’ and seller’s participa-
tion decisions. This assumption reflects our belief that the participation decisions of intermedi-
aries are significantly less flexible than those of buyers and sellers in many intermediated de-
centralized markets (e.g., real estate, used car, and financial asset markets) due to nontrivial
entry/exit cost. It certainly limits the applicability of our model to understanding long-run in-
dustry dynamics and firms’ turnover in these markets.

2.3. Individual Problem and Equilibrium. This subsection formulates the competitive
search equilibrium. In our model, intermediaries are ex post heterogeneous in their inven-
tory holdings. Therefore, as in other continuous-time heterogeneous-agent models with a
continuum of atomistic agents (see, e.g., Shi, 2009; Nuño and Moll, 2018; Achdou et al.,
2022), a competitive equilibrium can be characterized by two coupled differential equations:
a Hamilton–Jacobi–Bellman (HJB) equation for the optimal choices of each atomistic individ-
ual who takes the evolution of the inventory distribution as given, and a Kolmogorov Forward
(KF) equation describing the law of motion of the inventory distribution induced by agents’
optimal choices.

2.3.1. The seller’s problem. Let St denote a seller’s life-time expected surplus gaining from
the intermediary sector. At each instant t, he decides whether and where to search. By the
standard argument, St obeys the following HJB equation:

ρSt = Ṡt + max
{

− κs + max
w>0

{ψw(λt (w))(w − St )}, 0
}
.(1)

There are two terms on the right-hand side of the HJB. The first term is the value function’s
partial derivative with respect to the calendar time, absorbing the effect of aggregate state gt .
The second term captures the payoff corresponding to the seller’s choice. If he chooses to en-
ter wholesale submarket w, he foregoes a flow outside option κs and meets an intermediary at
a rate ψw(λt (w)) and sells his product, receiving a payoff change from St to w. The time in-
dex of λt (w) allows for potentially time-dependent mapping between wholesale price w and
submarket tightness. If he decides not to enter any wholesale submarket, he neither meets any
intermediary nor foregoes the flow outside option, receiving a flow surplus 0. Obviously, it is
strictly suboptimal to give up the outside option κs > 0 to search in a wholesale market with
w ≤ 0, so it is without loss to focus on wholesale submarkets such that w > 0.
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438 li et al.

The standard free-entry (FE) argument implies that in equilibrium, at any time t, there is no
room for extra gains, so a seller never derives positive surplus from the intermediary sector,
that is,

St = Ṡt = 0, ∀t.

As a result, the tightness λt (w) in any wholesale submarket market w must satisfy the follow-
ing FE condition:

κs ≥ ψw(λt (w))w,(2)

and λt (w) ≥ 0 with complementary slackness at each instant t. The left-hand side of condition
(2) is the seller’s outside option κs; the right-hand side corresponds to the expected revenue of
entry, which is given by the product between the rate at which the seller meets an intermedi-
ary ψw(λt (w)) and the selling price of the good w. If the tightness is positive in any submarket
w, then the equality must hold in (2); otherwise, either more sellers have the incentive to en-
ter the wholesale submarket or some sellers who are supposed to enter the wholesale submar-
ket have the incentive not to do so. Therefore, for each wholesale price w > 0, there exists a
unique submarket tightness that is strictly positive and satisfies the FE condition, given as

λ(w) = ψ−1
w

(κs

w

)
,(3)

which describes a one-to-one mapping between wholesale price and submarket tightness that
is independent of time t and the aggregate gt .

2.3.2. The buyer’s problem. Similarly, let Bt denote a buyer’s surplus gaining from the in-
termediary section. At each instant, the buyer decides whether to enter a retail submarket and
which one to enter. The buyer’s Bt satisfies an HJB equation, given as

ρBt = Ḃt + max
{

− κb + max
p∈[0,u)

{ψr(θt (p))(u − p − Bt )}, 0
}
.(4)

The first term on the right-hand side of the HJB is the time derivative of the buyer’s value
function, reflecting the effect of change in the aggregate state gt . The second term captures
the impact of the buyer’s choice. If he chooses to enter retail submarket p, he forgoes a flow
outside option κb and meets an intermediary at a rate ψr(θt (p)) and buys at price p, receiving
a payoff gain u − p − Bt . The time index in θt (p) allows for generic time-dependent mapping
between retail price p and submarket tightness. If he decides not to enter any retail submar-
ket, he neither foregoes the outside option nor meet any intermediary. Obviously, it is subop-
timal to search in a retail market with p ≥ u, so it is without loss to focus on retail submarkets
such that p ∈ [0,u).

As in the seller’s problem, the usual FE argument implies that Bt = Ḃt = 0 in equilibrium,
∀t, and the tightness in each retail submarket must satisfy the following FE condition:

κb ≥ ψr(θt (p))(u − p),(5)

and θt (p) ≥ 0 with complementary slackness. Condition (5) guarantees that the tightness θt (p)
is consistent with the buyer’s incentive to search. The opportunity cost of search is given by κb,
and the benefit of search is given by the product between the rate at which the buyer meets an
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inventory management in decentralized markets 439

intermediary ψr(θt (p)) and the surplus from buying the good at price p. The stationary one-
to-one mapping between the retail market price and the market tightness is described by

θ (p) = ψ−1
r

(
κb

u − p

)
,(6)

such that for each retail price p ∈ [0,u), there is a unique submarket tightness that is strictly
positive and satisfies the FE condition, and it is independent of time t and the aggregate gt .

2.3.3. The intermediary’s (pricing) problem. Consider an intermediary with inventory x at
time t. It decides whether and where (at what wholesale price) to make new orders and
whether and where (at what retail price) to sell its inventory. If the intermediary has at least
one unit of inventory x ≥ 1 at t, its expected value Vt (x) obeys the following HJB equation:

ρVt (x) = V̇t (x) − c(x) + max
{

0, max
w∈R+

φw(λ(w))[−w + Vt (x + 1) − Vt (x)]
}

︸ ︷︷ ︸
wholesale problem

+ max
{

0, max
p∈[0,u)

φr(θ (p))[p + Vt (x − 1) − Vt (x)]
}

︸ ︷︷ ︸
retail problem

.(7)

At each moment, an atomistic intermediary with positive inventory chooses a retail submar-
ket and a wholesale submarket to enter, associated with a pair of retail and wholesale prices,
treating the functional forms of the corresponding market tightnesses λ(·), θ (·) defined in
Equations (3) and (6) as given. There are four terms on the right-hand side of Equation (7).
The first term is the value function’s partial derivative with respect to the calendar time, ab-
sorbing the effect of aggregate state gt on the intermediary’s problem. The second term is the
flow cost of holding x units of inventories. The third and fourth items concern whether and
which wholesale and retail submarkets to enter, respectively. Choosing not to enter any sub-
market yields zero value flow. In the third term, the expected value flow of entering wholesale
submarket w is the rate at which the intermediary meets a seller φw(λ(w)) in the submarket
times the change in continuation value when the intermediary buys one unit of good from the
seller, −w + Vt (x + 1) − Vt (x). Analogously, in the last term, the expected value flow of en-
tering retail submarket p is the rate at which the intermediary meets a buyer φr(θ (p)) in the
submarket times the change in continuation value when the buyer purchases one unit of good
from the intermediary, p + Vt (x − 1) − Vt (x).

In words, at each moment t and the inventory level x ≥ 1, an intermediary takes as given
the price-tightness mapping in each submarket and the evolution of the aggregate state gt and
controls the Poisson arrival rates of buyers (φr(θ (p))) and sellers (φw(λ(w))) by choosing re-
tail and wholesale prices.

An intermediary cannot sell when stocking out, so the HJB equation at x = 0 does not in-
clude the choice of a retail submarket,

ρVt (0) = max
w∈R+

V̇t (0) + φw(λ(w))[−w + Vt (1) − Vt (0)].(8)

Denote the optimal control as pt (x),wt (x) for each t.
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440 li et al.

2.3.4. Evolution of the aggregate state. Given {θ (·), λ(·), pt (·),wt (·)}t∈R+ , the distribution
of inventory across intermediaries gt evolves according to the following KF equation:

ġt (x) = gt (x − 1)φw(λ(wt (x − 1))) + gt (x + 1)φr(θ (pt (x + 1)))︸ ︷︷ ︸
inflows

− gt (x)[φr(θ (pt (x))) + φw(λ(wt (x)))]︸ ︷︷ ︸
outflows

,(9)

for every x ∈ N, and

∑
x∈N

gt (x) = 1, ∀t.(10)

The left-hand side of Equation (9) is the time derivative of the measure of intermediaries who
hold x units of inventory at time t. The right-hand side of Equation (9) has three parts. The
first two terms are positive, but the last term is negative. First, gt (x − 1) of intermediaries hold
x − 1 units of inventory each and search in a wholesale submarket with tightness λ(wt (x − 1))
at time t, and φw(λ(wt (x − 1))) of them find sellers, trade, and increase their stock to x. Sec-
ond, gt (x + 1) of intermediaries hold x + 1 units of inventory each and search in a retail sub-
market with tightness θ (pt (x + 1)) at time t, and φr(θ (pt (x + 1))) of them find buyers, trade,
and decrease their stock to x. Finally, gt (x) of intermediaries hold x units of inventory at time
t and φr(θ (pt (x))) of them meet buyers and φw(λ(wt (x))) of them meet sellers, changing their
inventory from x to x − 1 and x + 1, respectively.

2.3.5. Equilibrium. A competitive search equilibrium is a value function Vt (x), a pair of
controls (pt (x),wt (x)), a pair of market tightness function (θ (p), λ(w)), and a probability
mass function gt (x) for each calendar time t such that

1. θ (p) and λ(w) satisfy the FE conditions (3) and (6) for any p ∈ [0,u), w ∈ R++,
2. given {θ (p), λ(w)}, Vt (x) is the solution of the intermediary’s HJB equations (7) and (8),

and the associated optimal controls are pt (x),wt (x) for any t and x ∈ N, and
3. given {θ (p), λ(w), pt (x),wt (x)}, gt (x) is a solution of the KF equations (9) and (10).

The system of Equations (3) and (6)–(10) fully characterize the evolution dynamics of our
economy given an initial inventory distribution g0, which is degenerate when all intermedi-
aries are ex ante identical. In general, two systems need to be pinned down simultaneously:
the KF equations are determined by individual optimal policy, and the evolution of the in-
ventory distribution affects an individual’s optimal choice through the calendar time. We are
particularly interested in the competitive search equilibrium with the so-called block recursive
structure where each intermediary’s problem is distribution-free (see, e.g., Shi, 2009; Menzio
and Shi, 2010, 2011), that is,

pt (x) = p(x), wt (x) = w(x), Vt (x) = V (x), ∀t, x.(11)

Solving a block recursive equilibrium is both analytically and computationally convenient.
As is standard in competitive search models, it is without loss of generality to focus on block
recursive equilibria in our setting. We will argue that (i) all competitive search equilibria are
block recursive and (ii) there is a unique block recursive equilibrium.

3. analysis

In this section, we provide equilibrium analysis of the model. First, we characterize the
equilibrium and introduce our main proposition that establishes that prices decrease with
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inventory management in decentralized markets 441

inventory. Next, we analyze the steady state and transition dynamics and show the existence
of a unique stationary distribution of inventory holdings.

3.1. Equilibrium Characterization. An intermediary faces a trade-off between the ex-
pected speed of trade and the transaction price. Specifically, Equation (6) implies that each
buyer’s expected benefit of search must be constant in every retail submarket in an equilib-
rium. Hence, θ (p) must decrease in p. That is, if a retail submarket features a higher price,
its equilibrium buyer-to-intermediary ratio must be lower, making it more likely for each con-
sumer to meet an intermediary. If an intermediary wants to sell faster (larger φr(θ (p))), he
must enter a retail submarket featuring a lower price p. The same reasoning applies to the
trade-off between transaction speed and price in wholesale submarkets. The one-to-one equi-
librium relationship between price and market tightness implies that one can reformulate
each atomistic intermediary’s (pricing) problem as choosing the tightness of the submarket he
plans to enter.

Specifically, the intermediary’s equilibrium choice of retail policy pt (x) necessarily solves

max
p∈[0,u)

φr(θ (p))[p + Vt (x − 1) − Vt (x)],(12)

where θ (p) is given by (6) and Vt (x) solves the HJB equation (7). It is mathematically equiva-
lent to a text-book monopoly pricing problem where the cost is Vt (x) − Vt (x − 1) and the de-
mand function is φr ◦ θ (·). One can equivalently write the problem in (12) as

max
θ∈�

φr(θ )[p(θ ) + Vt (x − 1) − Vt (x)],

where the tightness feasible set is

� ≡ [0, ψ−1
r (κb/u)] = {0} ∪ θ ([0,u)]),

which is the union between 0 and the image of function θ (·), and for any θ > 0, p(θ ) is the in-
verse of θ (·) in (6), that is,

p(θ ) = u − κb

ψr(θ )
= u − κbθ

φr(θ )
,(13)

where ψr(·) is decreasing. Condition (13) thus immediately implies that p(·) is decreasing. It
can be viewed as the inverse “demand curve” an intermediary faces. We extend the feasible
set of � to include θ = 0 to capture the idea that the intermediary is free not to search in any
retail submarket. We assume that p(0) is an arbitrary constant so that choosing θ = 0 leads to
a zero value of the retail problem.

Similarly, the intermediary’s wholesale problem in Equation (7) can be equivalently written
as

max
λ∈	

φw(λ)[−w(λ) + Vt (x + 1) − Vt (x)],

where 	 = R+ is the feasible set for wholesale submarket tightness, and for any λ > 0, w(·) is
the inverse of λ(·) in Equation (3), given as

w(λ) = κs

ψw(λ)
= κsλ

φw(λ)
,(14)

which is increasing in λ and has the flavor of the inverse “supply curve” faced by an interme-
diary. The feasible set includes λ = 0 to allow the intermediary not to search in any wholesale
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442 li et al.

submarket. Assume w(0) to be an arbitrary constant so that choosing λ = 0 leads to a zero
value of the wholesale problem.

Plugging Equations (13) and (14) into the intermediary’s retail and wholesale problems in
Equation (7) implies that the intermediary’s equilibrium value function Vt (x) solves the fol-
lowing HJB equation:

ρVt (x) = V̇t (x) − c(x) + max
θ∈�

φr(θ )[u + Vt (x − 1) − Vt (x)] − κbθ︸ ︷︷ ︸
retail market surplus

+ max
λ∈	

φw(λ)[Vt (x + 1) − Vt (x)] − κsλ︸ ︷︷ ︸
wholesale market surplus

.(15)

In equilibrium, it is as if the intermediary solves a decision problem based on the inventory
level at each moment, such that the intermediary chooses the tightness of the retail submar-
ket where he looks for buyers and the tightness of the wholesale submarket where he looks
for sellers.

The optimal retail market tightness, denoted by θ∗
t (x), maximizes the expected flow surplus

generated by the intermediary and a mass of buyers with measure θ∗
t (x). To be specific, main-

taining the market tightness to be θ incurs a social opportunity cost κbθ , but the intermedi-
ary and a buyer will meet at a rate φr(θ ) and generate gains from trade u + Vt (x − 1) − Vt (x).
Similarly, the optimal wholesale market tightness, denoted by λ∗

t (x), maximizes the expected
surplus generated by the intermediary and a mass of sellers with measure λ∗

t (x). Given that
all buyers and sellers break even in equilibrium, the value function Vt (x) thus corresponds
to the discounted expected social surplus that an intermediary with inventory x at t gener-
ates from time t on. The optimal controls θ∗

t (x) and λ∗
t (x) for the HJB equation (15) corre-

spond to the equilibrium market tightnesses in retail submarket p(θ∗
t (x)) and wholesale sub-

market w(λ∗
t (x)), respectively. Therefore, solving a competitive search equilibrium is equiva-

lent to solving the decision problem (15) and to plug the optimal controls into the conditions
(13) and (14).

Now we argue that the solution Vt (·) to HJB equation (15) is stationary. In principle, the
solution to problem in Equation (15) is allowed to be nonstationary (V̇t �= 0) to capture the
impact of the evolution of the inventory distribution gt , but a closer look at the problem in
Equation (15) reveals that the calendar time plays a role in the dynamic control problem only
through the control variables {θt (x), λt (x)}. Specifically, in (15), an intermediary maximizes
the expected lifetime total utility that he delivers to buyers, net of the expected lifetime in-
ventory cost, and {θt (x), λt (x)} solely pins down the stochastic process of the intermediary’s
lifetime inventory {xt} and hence the process of flow payoff. Toward a contradiction, suppose
that Vt (x) < Vt ′ (x) for some x and t �= t ′, the intermediary at time t has a profitable deviation
by mimicking its time-t ′ self’s continuation play. As a consequence, the calendar time t (and
thus the distribution gt) cannot affect the intermediary’s optimal continuation payoff, that is,
Vt (x) = V (x), V̇t (x) = 0,∀t, x, and Equation (15) can be rewritten as the following stationary
HJB:

ρV (x) = −c(x) + max
θ∈�

φr(θ )[u + V (x − 1) − V (x)] − κbθ

+ max
λ∈	

φw(λ)[V (x + 1) − V (x)] − κsλ.(16)

Naturally, the optimal controls θ∗(x), λ∗(x) must be stationary. By conditions (13) and (14),
the equilibrium retail and wholesale prices must be stationary as well, that is, p∗

t (x) =
p(θ∗(x)),w∗(x) = w(λ∗(x)). In sum, all agents’ problems in equilibrium are independent of
the aggregate state gt , and so, all competitive equilibria are block recursive.
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inventory management in decentralized markets 443

The equilibrium existence and uniqueness boils down to the existence and uniqueness of
the solution to the stationary HJB function (16), which can be verified by the standard argu-
ment (see, e.g., Chapter 4 of Guo and Hernández-Lerma, 2009). The optimal value function
V (x) must be unique. Therefore, given V (x), it is straightforward to see from (15) that the
intermediary’s optimal retail policy θ (x) and optimal wholesale policy λ(x) can be character-
ized separately as two optimization problems and are unique due to the strict concavity of the
matching function.10

From the problem in (16), it follows that the optimal θ∗(x) must satisfy the first-order con-
dition (FOC) given as

κb ≥ φ′
r(θ

∗(x))[u + V (x − 1) − V (x)],(17)

and θ∗(x) ≥ 0 with complementary slackness. The FOC in (17) says that the marginal oppor-
tunity cost κb to the economy to maintain the tightness to be θ∗(x) > 0 must equal the social
marginal benefit of doing so in any retail submarket with positive tightness. Here, the social
opportunity cost is incurred by buyers and the social benefit is the expected surplus of a trans-
action. Similarly, the optimal λ∗(x) must satisfy

κs ≥ φ′
w(λ∗(x))[V (x + 1) − V (x)],(18)

and λ∗(x) ≥ 0 with complementary slackness. It says that the marginal social opportunity cost
κs incurred by sellers equals the social marginal benefit of maintaining the tightness to be
λ∗(x) > 0.

Notice that conditions (17) and (18) imply that θ (x) and λ(x) depend on gains from trade,
u + V (x − 1) − V (x) and V (x + 1) − V (x), respectively, which depends on the intermediary’s
current inventory size x. The following lemma characterizes how inventory size affects gains
from trade for an intermediary in both retail and wholesale markets.

Lemma 1. In the equilibrium, whenever V (x) increases in x, the difference V (x) − V (x − 1)
decreases in x; if V (x) starts to decrease at some x = S ∈ N, V (x) decreases over all x > S.

Lemma 1 says that any positive marginal benefit of accumulating inventory decreases in the
level of inventory whenever it exists.11 Intuitively, this property is due to the combination of
two factors. The first one is the diminishing risk of stocking out. With two-sided search fric-
tions, an intermediary faces uncertainty about both the demand in retail markets and the sup-
ply in wholesale markets. If his inventory is reduced to zero, he can neither immediately or-
der goods from sellers nor trade with buyers. As the intermediary’s inventory size increases,
the stockout risk in the near future falls, lowering the marginal benefit of increasing inventory.
The second one is the increasing inventory cost function. As x increases, the marginal inven-
tory cost erodes the benefit of reduced stockout risk, also contributing to the diminishing re-
turn of adding inventory. Moreover, with a weakly convex inventory cost function, the benefit
of adding more inventory V (x) − V (x − 1) becomes negative at sufficiently large x. Therefore,
the maximum of V (x) exists, and we define

S = min{arg maxx∈NV (x)}(19)

10 The lack of multiplicity is due to the FE specification in both retail and wholesale markets, making the equilib-
rium allocation socially efficient, as in many competitive search models, for example, Moen (1997) and Menzio and
Shi (2011).

11 This property of diminishing returns to inventory is quite robust. It was first found in the multiunit search paper
of Carrasco and Smith (2017). Their article is different in that it is a single-agent search model. The model is extended
by Carrasco and Harrison (2022) by introducing operational cost. A similar property has been obtained in Chen et al.
(2020) where search frictions are absent.
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444 li et al.

as the minimal inventory level at which an intermediary’s value achieves the maximum.12

Then, by Lemma 1, the benefit of adding more inventory, V (x) − V (x − 1) will be negative
for any x > S as well, resulting in an equilibrium upper bound for the intermediary’s inven-
tory level.

Now we are ready to derive the relationship between inventory and prices. Let

p∗(x) ≡ p(θ∗(x)) and w∗(x) ≡ w(λ∗(x))

denote the equilibrium retail and wholesale pricing policy where p(·) and w(·) are specified in
conditions (13) and (14).

Proposition 1. In the equilibrium, the intermediary’s choice of submarkets is such that

1. θ∗(x) increases in x and retail price p∗(x) decreases in x, and
2. λ∗(x) and the wholesale price w∗(x) decrease in x.

Proposition 1 says that at a higher inventory level, the intermediary will enter a retail sub-
market with lower price and higher matching probability (easier to sell), and enter a whole-
sale submarket with lower wholesale price and lower matching probability (harder to buy).
This is intuitive. An intermediary trades off between the risk of stockout and the cost of in-
ventory and new orders. When the inventory stock becomes higher, the risk of stockout de-
creases, but the inventory cost becomes higher, so it is optimal to lower future inventory by
selling more and buying less. To do so, the intermediary needs to lower both the retail and
wholesale prices. Similarly, when his stock becomes too low, the concern of stockout grows,
and the intermediary raises both the retail price and the wholesale price to slow down the
sales and speed up new orders, increasing his future inventory holding in expectation.

The empirical implication of Proposition 1 is that when the intermediary’s inventory in-
creases, (i) the retail price decreases and the sales increase on average and (ii) the wholesale
price decreases and new orders decrease on average.

Corollary 1. An intermediary’s equilibrium retail and wholesale prices comove over time.

Corollary 1 is an immediate implication of Proposition 1. Driven by the change in inven-
tory, an intermediary’s retail price and wholesale price should move in the same direction. De-
pending on the elasticity of the matching functions in retail and wholesale markets and the
search and entry cost, the retail price and the wholesale price may respond to the inventory
change differently. When the wholesale price is more sensitive to the change of inventory, the
equilibrium exhibits incomplete pass-through (Nakamura and Zerom, 2010). Also, because of
the comovement, the markup, which is the difference between the retail price and the whole-
sale price, can be either positively or negatively correlated with the inventory, depending on
the matching function elasticity in the retail and wholesale markets.

Recall that Lemma 1 implies that V (x) increases if and only if x < S, where S is defined in
Equation (19), so λ∗(x) = 0 for any x ≥ S. However, even if x < S, the marginal benefit of in-
creasing inventory may be sufficiently small so that

κs > φ′
w(λ)[V (x + 1) − V (x)],

12 The set arg maxz∈N V (z) is a singleton at a generic point in the parameter space and may contain up to two ad-
jacent elements, in which case we select the smallest element. This selection is the only robust choice to the perturba-
tion of an arbitrarily small marginal cost of production and delivery.
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inventory management in decentralized markets 445

for any λ, making it impossible to generate gains from trade in the wholesale market. In this
case, it is still optimal to set λ = 0. We denote by

s = max{x ∈ N : λ∗(x) > 0},(20)

in the equilibrium, which is referred as the base level of stock in the literature. Notice that
s < S, and λ∗(x) > 0 for any x ≤ s. Therefore, the equilibrium resembles the classic base stock
policy in the inventory management literature (see, e.g., Porteus, 2002).

Corollary 2. In the equilibrium, the intermediary employs a base stock policy, that is,
λ∗(x) > 0 if and only if x ≤ s.

3.2. Steady-State Distribution and Transition Dynamics. Now we study the steady-state
distribution of inventory holding and retail price. In equilibrium, the optimal controls
θ∗(x), λ∗(x) govern the law of motion of the inventory distribution across intermediaries. With
any given initial distribution g0 at t = 0, the following KF equation fully describes the equilib-
rium dynamics as

ġt (x) = gt (x − 1)φw(λ∗(x − 1)) + gt (x + 1)φr(θ∗(x + 1))︸ ︷︷ ︸
inflows

− gt (x)[φr(θ∗(x)) + φw(λ∗(x))]︸ ︷︷ ︸
outflows

,(21)

for every x ∈ N and any time t, with
∑∞

x=0 gt (x) = 1.

3.2.1. Steady-state distribution. At steady state, ġt (x) = 0 for every x, and so, the distribu-
tion of inventory holding across intermediaries is constant over time.

Proposition 2. There exists a unique steady-state distribution gss of inventory holdings across
intermediaries, such that limt→∞ gt = gss, with gss(x) > 0 if 0 ≤ x ≤ s + 1 and gss(x) = 0 other-
wise. The distribution is unimodal and satisfies

gss(x) = gss(0)
x∏

i=1

φw(λ∗(i − 1))
φr(θ∗(i))

, ∀x ≥ 1,

where

gss(0) =
(

1 +
s+1∑
x=1

x∏
i=1

φw(λ∗(i − 1))
φr(θ∗(i))

)−1

.

Proposition 2 says that the unique stationary inventory distribution has positive probability
masses over finite (s + 2) inventory levels, and the probability mass function gss has a single
peak, because the retail rate φr(θ∗(x)) increases in inventory level x, whereas the wholesale
rate φw(λ∗(x)) decreases.13 The intuition behind is very simple. By Proposition 1, in equilib-
rium, an intermediary’s expected increment of inventory is decreasing in his current inventory.
Therefore, there exists a cutoff inventory level denoted by x∗ such that the intermediary’s ex-
pected increment is negative if and only if his current inventory stock is above x∗. As a result,

13 Following Hartigan and Hartigan (1985), we say a probability distribution is unimodal (or single-peaked) if there
is a mode x∗ such that the cumulative density or mass function of the probability distribution is convex for x ≤ x∗ and
concave for x ≥ x∗.
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446 li et al.

the equilibrium inventory dynamics behaves as if a “mean” regression process: Whenever
an intermediary’s inventory deviates from x∗, he adjusts the retail or wholesale policy θ and
λ to push the future stock back to x∗. The more the stock deviates from the mean level, the
faster the speed of the regression is. In the steady state, the mass of intermediaries at the
cutoff level of inventory x∗ is the highest, and the mass monotonically decreases as the stock
becomes farther and farther away from x∗. As a consequence, x∗ is the unique mode of the
steady-state distribution.

Because the intermediary retail price is monotone in his inventory size (Proposition 1), it is
immediate that the equilibrium inventory dynamics shapes the steady-state distribution of re-
tail price.

Corollary 3. There exists a unique steady-state distribution of retail prices across intermedi-
aries, and it is unimodal.

That is, our model predicts that the distribution of retail price in the steady state is single-
peaked. Because the inventory is most likely to be around x∗, one should expect that the in-
termediary’s retail price is equal to or close to p∗(x∗) most of the time. Extremely high or low
prices will be observed rarely. Notice that our model has no ex ante heterogeneity among buy-
ers, sellers, or intermediaries. The retail price dispersion is generated even if no agent random-
izes, which distinguishes our model from most search models that rely on agents’ heterogene-
ity and mixed strategy to generate price dispersion.

We want to point out that at the steady state, an individual intermediary’s price still changes
over time due to inventory changes. Therefore, the equilibrium price exhibits intradistribution
dynamics. That is, the rank of an intermediary’s price varies over time within the price distri-
bution. This is because we assume that intermediaries are identical, so the model only gen-
erates a temporal price dispersion instead of a “spatial” or persistent price dispersion across
intermediaries. This is consistent with a number of empirical studies such as Lach (2002) and
Chandra and Tappata (2011). In the literature, such a phenomenon is often used to support
the mixed-strategy pricing equilibrium suggested by consumer search models. Our result sug-
gests that to test whether firms play mixed strategies (at least in industries where inventory
costs and stockout risks are nontrivial), one may also need to take into account their inven-
tory dynamics.

3.2.2. Transition dynamics. Many economic and policy-relevant questions involve the tran-
sition dynamics, that is, the endogenous evolution of the economy from some initial inventory
distribution. We close this section by briefly discussing the transition dynamics.

In our model, thanks to the block recursive structure, the individual equilibrium policy is
independent of the inventory distribution. It is therefore sufficient to keep tracking the solu-
tion to the differential equations (9) given θ∗(x), λ∗(x) and some initial distribution of inven-
tory g0(x). This tractability makes it easy to use our model to study many interesting ques-
tions, such as the role of a frictional supply chain in the transmission of unexpected demand
and supply shock. Specifically, suppose that the seller’s entry cost κs permanently increases at
time 0 when the economy’s old steady-state distribution is g0(x). After the supply shock, all
individuals immediately adjust their policies, and the equilibrium market tightnesses change
accordingly to θ∗(x), λ∗(x). However, it will take time for the economy to converge to the new
steady state due to friction. We illustrate it further in Section 5 after calibrating the model.

4. extensions

In this section, we enrich our baseline model by introducing multiunit wholesale package,
product differentiation, and intermediary heterogeneity. These extensions make our model
applicable to many markets and demonstrate that the model can address some questions that
are usually studied in static or decision frameworks.
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inventory management in decentralized markets 447

4.1. Multiunit Wholesales and the Optimality of (s,S)-Rule. In many industries, it is rea-
sonable to assume that an intermediary can purchase multiple units when he meets a seller.
Our framework can easily incorporate this feature, and some classic inventory management
properties such as (s,S)-rule and nonlinear wholesale pricing naturally emerge in equilibrium.

Suppose that a wholesale submarket is indexed by a bundle (w, y) ∈ R+ × N where y is the
supply quantity of the bundle and w is the total price of the bundle. To focus on the impact of
search frictions, we ignore the production cost by assuming the seller’s fixed and marginal pro-
duction cost to be zero, so the FE condition (2) still holds. An intermediary therefore decides
not only the wholesale purchase price but also the wholesale purchase quantities y by choos-
ing a wholesale submarket. Using a similar procedure, we conclude that the intermediary acts
as if to solve the following problem at any x ≥ 1:

ρV (x) = −c(x) + max
θ∈�

φr(θ )[u + V (x − 1) − V (x)] − κbθ

+ max
λ∈	, y∈N

φw(λ)[V (x + y) − V (x)] − κsλ,(22)

and (8) at x = 0. The optimal θ∗(x) still satisfies condition (17), but the optimal wholesale pol-
icy y∗(x), λ∗(x) satisfies the following necessary conditions:

κs ≥ φ′
w(λ∗(x))[V (x + y∗(x)) − V (x)],(23)

y∗(x) ∈ arg maxy∈N{φw(λ∗(x))[V (x + y) − V (x)] − κsλ
∗(x)}.(24)

The rest of the equilibrium analysis is straightforward. Using the same argument, one can
show the analogy of Lemma 1 and that θ∗(x) increases and λ∗(x) decreases.

Given the optimal controls θ∗(x), λ∗(x), y∗(x), the corresponding optimal retail price for
the intermediary with x units of inventory can be still computed by plugging θ∗(x) into Equa-
tion (13), and if he searches for ordering new inventory, that is, λ∗(x) > 0, y∗(x) > 0, his opti-
mal wholesale price of the y∗(x)-unit bundle is given by plugging λ∗(x) into Equation (14).

4.1.1. The optimality of (s,S)-rule. One interesting implication of this extension is that the
classic (s,S)-rule (Scarf, 1960) naturally emerges in our equilibrium search model. Under this
policy, an intermediary makes wholesale orders whenever the inventory level falls to or be-
low some s > 0 and replenishes to a target level S > s. An exogenous assumption of a con-
cave cost of ordering is often necessary to ensure the optimality of an (s,S)-rule. In our set-
ting, however, such a concave structure naturally emerges as an equilibrium outcome due to
search frictions. The formal statement is as follows:

Proposition 3. The optimal wholesale policy λ∗(x), y∗(x) is an (s,S)-rule. Specifically, define
S ∈ N as the minimal inventory level at which an intermediary’s value achieves the maximum as
in (19). Then, ∃s ∈ N, s < S, such that

1. an intermediary with inventory x searches in the wholesale market if and only if its in-
ventory is at or lower than the replenishment point, that is, λ∗(x), y∗(x) > 0 if and only if
x ≤ s, and

2. whenever x ≤ s, the intermediary seeks to raise its inventory level to the order-up-to level S,
that is, y∗(x) = S − x,∀x ≤ s.

The logic is as follows: Suppose that λ∗(x), y∗(x) > 0 for some x ≤ s, then by (24), the inter-
mediary’s optimal order quantity y∗(x) must satisfy

y∗(x) + x = arg max
z≥x

φw(λ∗(x))[V (z) − V (x)] − κsλ
∗(x).
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448 li et al.

Figure 1

illustration of the optimality of the (s, S)-rule
the horizontal axis represents the choice of λ, and the vertical axis represents the value of corresponding

benefit and cost of each λ.

With λ∗(x) being independent of the order quantity, it must be optimal to set y∗(x) = S − x.
Therefore, if the intermediary decides to search in the wholesale market for replenishment, it
seeks to order to the level that maximizes the equilibrium continuation value.

When x ≥ S, the value function V (x) decreases, and there is no benefit to order more in-
ventory, so λ∗(x) = 0. When x < S, the gain from ordering up V (S) − V (x) is positive and in-
creases as the inventory level x goes down due to the concavity of the value function. When
x is sufficiently low, it is optimal to set λ∗(x) > 0. We define s as in Equation (20). Notice that
s = S − 1 if κs is sufficiently small. The idea is visualized in Figure 1.

Remark 1. When the marginal production cost is δ > 0, the optimal ordering policy will
satisfy an adjusted (s,S)-rule. First, it is still optimal to set λ∗(x) > 0 only if x ≤ s, but when
x ≤ s, the optimal quantity of order will not be constant but satisfies y∗(x) + x = S(x) =
arg maxz∈N V (z) − δz.

4.1.2. Equilibrium nonlinear pricing. Another interesting feature of the equilibrium is that
the equilibrium price–quantity relationship in the wholesale market is in general nonlinear.
When x ≤ s, the equilibrium price w(λ∗(x)) decreases in x, and the quantity–price relationship
is nonlinear across bundles being traded in the wholesale market, that is, the “unit wholesale
price” w(λ∗(x))/y∗(x) is not constant across x ∈ {0, 1, . . . , s}. Specifically, for any x ≤ s, the in-
termediary aims to place a wholesale order of y∗(x) = S − x units, and the equilibrium cost
of the bundle is w(λ∗(x)) = κs/ψw(λ∗(x)) according to (14). Consequently, the unit price be-
comes w(λ∗(x))/y∗(x) = κs/[(S − x) × ψw(λ∗(x))], a nontrivial function of x instead of a con-
stant.

Remark 2. The nonlinear pricing result should be expected given the optimality of the
(s,S)-rule. In the literature, to sustain the (s,S)-rule as an equilibrium choice, it is often as-
sumed that the intermediary faces a nonlinear price-quantity relationship. In contrast, the
price nonlinearity endogenously emerges in our equilibrium search model.

4.1.3. Steady-state distribution. Now we study the cross-sectional distributions of inventory
holdings and retail prices. Using the equilibrium policies θ∗(x), λ∗(x), y∗(x) and starting from
any initial distribution g0, the law of motion of the inventory distribution across intermedi-
aries can be written as the following KF equations:

ġt (x) =
{∑

x′≤s gt (x′)φw(λ∗(x′)) + gt (S + 1)φr(θ∗(S + 1)) − gt (S)φr(θ∗(S)) if x = S,
gt (x + 1)φr(θ∗(x + 1)) − gt (x)[φr(θ∗(x)) + φw(λ∗(x))] if x �= S,

(25)
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inventory management in decentralized markets 449

and
∑∞

x=0 gt (x) = 1,∀t. The left-hand side of Equation (25) is the time derivative of the mea-
sure of intermediaries who hold x units of inventory at time t. The right-hand side of Equation
(25) depends on the value of x. When x = S, the inflow gt (x′)φw(λ∗(x′)) is the mass of inter-
mediaries who are holding x′ ≤ s units of inventory and successfully find sellers, trade, and in-
crease their inventory up to S. Such inflows occur at x = S only due to the optimal (s,S)-rule.
Another inflow gt (S + 1)φr(θ∗(S + 1)) accounts for any mass of intermediaries holding S + 1
units of inventory and successfully find buyers, trade, and lower their inventory to S. The out-
flow gt (S)φr(θ∗(S)) is similarly the mass of intermediaries who are holding S units of inven-
tory and successfully find buyers, trade, and lower their inventory to S − 1. When x �= S, there
is no inflow due to inventory replenishment in the wholesale market, but there may be an ad-
ditional outflow of intermediaries gt (x)φw(λ∗(x)). Specifically, λ∗(x) > 0 if x ≤ s, and this ad-
ditional outflow is positive because these low inventory intermediaries may successfully order
up to S; otherwise, intermediaries with sufficient inventory do not place wholesale order, and
λ∗(x) = 0.

At steady state, ġt (x) = 0 for every x and t, and the distribution of inventory holdings across
intermediaries is stationary over time, denoted as gm

ss. The following proposition characterizes
it.

Proposition 4. Suppose that intermediaries can make multiunit wholesale orders. There ex-
ists a unique stationary distribution gm

ss of inventory holdings across intermediaries, such that
limt→∞ gt = gm

ss, with gm
ss(x) > 0 if 0 ≤ x ≤ S, and gm

ss(x) = 0 otherwise. The distribution satisfies

gm
ss(x) = gm

ss(S)
S−1∏
i=x

φr(θ∗(i + 1))
φr(θ∗(i)) + φw(λ∗(i))

, ∀0 ≤ x < S,

where φw(λ∗(i)) = 0 if i ≥ s + 1, φr(θ∗(0)) = 0, and

gm
ss(S) =

(
1 +

S−1∑
x=0

S−1∏
i=x

φr(θ∗(i + 1))
φr(θ∗(i)) + φw(λ∗(i))

)−1

.

The distribution’s mode is between x = 0 and x = s + 1.

Proposition 4 says that the unique stationary inventory distribution has positive probability
mass over finite (S + 1) inventory levels. One may conjecture that there is a mode at x = S be-
cause all intermediaries with x ≤ s aim to bring their inventory up to level S. However, this is
only half of the story. An intermediary with S units of inventory will sell at a sufficiently low
retail price, and so, the transition probability from x = S to x = S − 1 will be sufficiently large,
bringing up the mass of intermediaries holding S − 1 units of inventory in the steady state. A
similar argument applies to intermediaries with S − 2,S − 3, . . . units of inventory. Moreover,
for any s < x < S, the steady-state condition ġt = 0 implies that

gm
ss(x + 1)φr(θ∗(x + 1)) = gm

ss(x)φr(θ∗(x)).

Since both θ∗(·) and φr(·) are increasing, we must have gm
ss(x + 1) ≤ gm

ss(x) for x > s, and so,
the mode is between x = 0 and x = s + 1.

As in the benchmark model, the intermediary retail price is monotone in his inventory size,
so the steady-state distribution of retail price can be easily characterized by the retail policy
p(θ∗(s)) and the inventory steady-state distribution, which is omitted.

4.2. Horizontal Product Differentiation. In the literature of industrial organization, a pop-
ular way to capture (horizontal) product differentiation and consumer taste heterogeneity is
to introduce idiosyncratic utility into the model: a buyer’s payoff by consuming a product is
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450 li et al.

a random variable ũ (see, e.g., Anderson et al., 1992 for a textbook treatment). In this sec-
tion, we introduce random utility into our framework and demonstrate how the presence of
horizontal product differentiation may alter the equilibrium characterization of the bench-
mark model.

Suppose that the buyer-product match-specific utility is independently and identically dis-
tributed across buyers and products. When a buyer and an intermediary meet, the buyer will
pick his favorite product that delivers positive payoff. For simplicity, assume that the match
between a buyer and a product is randomly good or bad. A good match occurs with proba-
bility α ∈ (0, 1], such that the buyer receives utility u by consuming the product; the match is
bad with complementary probability, and consumption delivers zero utility to the buyer. The
match between a buyer and an intermediary with inventory x is good if the buyer finds at least
one good match with the x products, with probability

�(x) = 1 − (1 − α)x,

which is strictly increasing and concave in x. Therefore, holding a large number of inventory
endows the intermediary another advantage: reducing the possibility of mismatch. In this case,
a retail submarket is indexed by (p, x), the price and the inventory size of the intermediaries
who trade in this market. In equilibrium, a match between a buyer and an intermediary will
lead to a transaction if and only if the match is good and generates strictly positive gain from
trade. Therefore, the intermediary’s problem (16) becomes

ρV (x) = −c(x) + max
θ≥0

φr(θ )�(x)[u + V (x − 1) − V (x)] − κbθ

+ max
λ≥0

φw(λ)[V (x + 1) − V (x)] − κsλ.(26)

The equilibrium FOC that the optimal λ∗(x) must satisfy is unchanged, whereas the optimal
θ∗(x) must satisfy

κb ≥ φ′
r(θ

∗(x))�(x)[u + V (x − 1) − V (x)].(27)

Because �(x) is strictly increasing and concave in x, one can verify that the optimal θ∗(x)
is still increasing in x. This is because the expected gain from trade between a matched
intermediary–buyer pair, �(x)[u + V (x − 1) − V (x)], increases in x. In words, when x is
higher, each match between a buyer and the intermediary will more likely lead to a transac-
tion, so it is socially optimal to let more buyers search. In fact, the extra term �(x) gives the
intermediary a stronger incentive to hold a large amount of inventory, which is to increase the
probability of a good match. Decreasing α will naturally intensify this scale effect and the in-
termediaries’ incentive to become big, which shifts the steady-state distribution of inventory
toward the right.

In the benchmark model, the equilibrium relationship between an intermediary’s inventory
and the optimal choice of retail price is monotone. With product differentiation, this mono-
tonicity is no longer guaranteed.

The tightness of each retail submarket must satisfy

κb ≥ ψr(θ (p))�(x)(u − p),(28)

and θ (p) ≥ 0 with complementary slackness, so the equilibrium price in each retail submarket
with a positive tightness is given by

u − κb

ψr(θ∗(x))�(x)
.(29)
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inventory management in decentralized markets 451

In the equilibrium, ψr(θ∗(x)) is decreasing in x, while �(x) is increasing in x, so the retail
price may no longer be monotone in the inventory x. The intuition is as follows: When his in-
ventory increases, the intermediary wants to sell faster, so he enters a retail submarket with
higher θ . From the perspective of buyers, it is less likely to meet an intermediary in a submar-
ket with higher θ , but conditional on meeting an intermediary, it is more likely to find a de-
sired product due to the intermediary’s larger inventory size. Therefore, the effective match-
ing probability ψr(θ )�(x) and the buyer’s willingness-to-pay may not be monotone in x in the
equilibrium. We summarize the above discussion as follows:

Proposition 5. In equilibrium, an intermediary’s optimal retail price is given by expression
(29), which may be nonmonotone in x.

The nonmonotone relationship between retail price and inventory implies that even though
the steady-state distribution of inventory gss is still unimodal, the distribution of retail prices
may not be.14

4.3. Vertical Product Differentiation. This section discusses how to introduce vertical prod-
uct differentiation into our framework. Suppose that there are J quality types, each of which
delivers utility uj to the buyer, such that uj+1 > uj,∀1 ≤ j < J. We assume symmetric infor-
mation, so different types of products are traded in different submarkets. Then the retail and
wholesale submarkets can be indexed by the price and the type of product being traded. In
equilibrium, the FE condition still holds for any submarket with positive market tightness.

It is natural to allow intermediaries to hold multiple types of product, that is, an intermedi-
ary’s inventory is a vector x = (x1, . . . , xJ ) ∈ NJ where x j denote the inventory of type- j prod-
uct. Following exact the same argument presented in the baseline model, the intermediary
acts as if to decide its retail and wholesale policy for each type of product θ j(x), λ j(x). The
corresponding HJB becomes

ρV (x) = −c(x) +
J∑

j=1

{
max
θ j∈� j

φr(θ j )[uj + V (x j − 1, x− j ) − V (x)] − κbθ
j
}

+
J∑

j=1

{
max
λ j∈	

φw(λ j )[V (x j + 1, x− j ) − V (x)] − κsλ
j
}
,(30)

where the cost function is c : NJ → R+, increasing in each argument, and x− j represents
the vector (x1, .., x j−1, x j+1, . . . xJ ). By similar argument, we can show that the corresponding
equilibrium retail and wholesale prices are given by uj − κb/ψr(θ j(x)) and κs/ψw(λ j(x)), re-
spectively. Unfortunately, this multidimensional dynamic optimization problem is analytically
intractable in general. The following proposition characterizes the equilibrium policy when
the cost function is additive.

Proposition 6. Suppose that the cost function is additive, that is,

c(x) =
J∑

j=1

c j(x j ),(31)

14 Numerical examples of nonsingle peaked steady-state price distribution are available upon request.
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452 li et al.

where c j : N → R+ is the inventory cost for product type j. Then the optimal policy is such that
θ j(x) and λ j(x) depend on x through xj only, and the value function satisfies

V (x) =
J∑

j=1

V j(x j ),(32)

where V j(x j ) corresponds to the type- j product problem such that

ρV j(x j ) = −c j(x j ) + max
θ j∈� j

φr(θ j )[uj + V j(x j − 1) − V j(x j )] − κbθ
j

+ max
λ j∈	

φw(λ j )[V j(x j + 1) − V j(x j )] − κsλ
j.(33)

Proposition 6 says that when the cost function is additive, a multiproduct intermediary acts
as multiple single-product intermediaries. The proof is to use the standard verification argu-
ment. By plugging Equations (31) and (32) into Equation (30), one can verify that the HJB
equation is balanced. A simple parametric example of the inventory cost being additive is to
specify the inventory cost as a linear function of x; that is, c(x) = ∑

j c jx j where the marginal
inventory cost c j ≥ 0,∀ j. If c j is constant across j, the inventory cost depends only on the to-
tal inventory

∑J
j=1 x j. In this case, the KF equation and the steady-state distribution of inven-

tory can be characterized separately for each product as in the baseline model, which is omit-
ted.

4.4. Heterogeneous Intermediaries. Intermediaries may be heterogeneous in their inven-
tory costs and matching technologies. For example, some intermediaries have outstanding
marketing and sales managers, bringing them high visibility to buyers; some have effective
purchasing departments and maintain good relationships with manufacturers, allowing them
to be part of an efficient supply chain; some have superior transportation or handling teams
or low opportunity cost of the money, admitting low marginal inventory cost. These hetero-
geneities can lead to variations in expected inventory sizes, sales, and profitability, and there-
fore, different inventory-price relationships among intermediaries.

It is straightforward to extend our model to accommodate intermediary heterogeneity.
Specifically, there are J types of intermediaries, and the proportion of each type j is denoted
by f j. Denote c j(·), φ j

r (·), and φ j
w(·) as respective functions for type- j intermediaries’ inven-

tory cost, retail matching rate, and wholesale matching rate. A retail submarket is indexed by
(p, j); a wholesale submarket is indexed by (w, j). Accordingly, the market tightnesses are
θ j(p) and λ j(w). Using an almost identical argument, we can show that in the unique block
recursive equilibrium, each type- j intermediary’s value solves the type-specific dynamic opti-
mization problem

ρV j(x) = −c j(x) + max
θ∈� j

φ j
r (θ )[u + V j(x − 1) − V j(x)] − κbθ

+ max
λ≥	 j

φ j
w(λ)[V j(x + 1) − V j(x)] − κsλ.(34)

Given the optimal control θ j(x), λ j(x), the corresponding retail and wholesale prices for
type- j intermediary can be computed using conditions (13) and (14) as in the benchmark
model. That is, a type- j intermediary’s optimal retail and wholesale prices are given by
p(θ j(x)) = u − κbθ

j (x)
φr(θ j (x)) and w(λ j(x)) = κsλ

j (x)
φw (λ j (x)) , respectively. The within-type inventory distri-

bution evolves according to a type-specific KF equation, given as

ġj
t (x) = gj

t (x − 1)φ j
w(λ j(x − 1)) + gj

t (x + 1)φ j
r (θ j(x + 1))

− gj
t (x)[φ j

r (θ j(x)) + φ j
w(λ j(x))],(35)
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inventory management in decentralized markets 453

for every x ∈ N and at each moment t, with
∑∞

x=0 gj
t (x) = 1,∀t, j. The steady-state distribu-

tion for type- j intermediary’s inventory, denoted by gj
ss(x), can be computed accordingly, and

it has a single peak by the same argument. The overall steady-state distribution of inventory is
gss(x) = ∑J

j=1 f jg
j
ss(x),∀x. The cross-sectional retail price distribution follows, which necessar-

ily depends on each gj
ss and the type distribution f j.

5. application to used-car markets

In this section, we apply the model to study used-car dealers’ inventory management and
dynamic pricing by using detailed information on used-car listings (inventories) by a large
number of car dealers. The empirical exercise serves multiple purposes. First, the empirical ex-
ercise serves as a test case for our model. We show (i) how to identify key parameters with
limited information and (ii) our model of search frictions and inventory predicts transition dy-
namics. Second, our focus on the used-car market is policy relevant. We quantify some im-
portant unobservable characteristics of market participants and the contribution of frictional
intermediaries managing inventories to welfare and analyze how changing primitives in this
market leads to different outcomes—which is particularly important given recent market dis-
ruptions in this industry. There is a growing literature studying the economics of car dealers,
and we are the first to focus on the role of inventories (see, e.g., Gavazza et al., 2014; Biglaiser
et al., 2020; Larsen, 2021, and Gillingham et al., 2022).

5.1. On Used-Car Markets. Although the practice of inventory management plays out in
many real-world settings, several factors make the used-car market suitable for our study.
First, the market is highly decentralized, making the search and matching frictions nontriv-
ial. As a result, many transactions are intermediated. Nationally, about two-thirds of used-car
sales are made by dealers. Second, inventory management is important for used-car dealers.
In general, dealers must manage both value erosion as assets age and holding costs, which
include floor-plan inventory investment and cost of capital.15 Third, cars are durable goods.
Most buyers and sellers do not make frequent transactions, so it is uncommon for dealers
to manage inventory acquisition with long-term contracts.16 Fourth, stocking decisions can be
made frequently. Dealers face substantial uncertainty and typically acquire used cars from in-
dividuals or at wholesale auctions. Dealers may have access to multiple auctions a week at
multiple auction locations. Fifth, dealers frequently adjust prices. These features suggest that
the interaction between inventory control and search friction is important in the used-car mar-
ket, making our theory applicable.17

Before moving forward, we would like to further elaborate the applicability (and limita-
tion) of our model to the used-car market. First, our model does not consider intermedi-
aries’ entry/exit. Our data include dealers’ listing and pricing in one year. In this relatively
short-term period, we do not anticipate significant structural change in the market. Second,
our directed search model assumes that all prices are observable. In the used-car applica-
tion, this information assumption is materialized by the aggregator such as cars.com : we im-
plicitly assume that all agents check and compare prices online before visiting dealers. Third,
as we discussed in the model section, a submarket corresponds a set of agents whose target

15 An inventory management expert Jasen Rice of LotPop said “For a dealer having 50 units or fewer on the lot,
one or two inventory management mistakes can crush their month.” See https://www.cbtnews.com/dealers-experts-
discuss-inventory-holding-cost-erosion/for details.

16 On the contrary, new car dealers sign long-term contracts, for example, dealership agreement, with manufactures
and essentially act as their representatives.

17 Our general understanding of the industry is from various industry reports, including Edmunds’ “Used Ve-
hicle Market Report,” Manheim’s “Used-Car Market Report,” and Murry and Schneider (2015). For industry
reports, see https://dealers.edmunds.com/static/assets/articles/2017_Feb_Used_Market_Report.pdfand https://publish.
manheim.com/content/dam/consulting/2017-Manheim-Used-Car-Market-Report.pdf
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purchase/selling price is consistent with the submarket price. See more discussion in Subsec-
tion 2.2. In Appendix A.2, we provide some preliminary evidence supporting the hypothesis
of directed search models.

5.2. Data. We obtain information on used-car listings from a large car listings platform,
cars.com. We observe the daily listings for dealers who list inventory on the platform in the
state of Ohio in 2017. For each car, we know the vehicle information number (VIN), which
is a unique number assigned to a vehicle that contains information to describe and identify
the vehicle, make, model, model year, and trim with a particular set of options, exterior color,
odometer mileage, whether it is certified by the OEM, and the daily listing price from the date
when it is initially listed to the date when it is removed from the Web site.

Notably, the platform’s pricing is not marginal to the number of cars listed, and the plat-
form reports that dealers typically list their entire inventory on the platform. Moreover, ac-
cording to our conversations with cars.com , most car dealers update their listings on the plat-
form immediately. Therefore, we are confident that a dealer’s new listings, listing removals,
and active listings at a point of time are the actual new orders, car removals, and inventory in
the dealership at that time, respectively. Although our data do not allow us to identify where a
newly added car is obtained from and where a removed car goes to, a dealer’s new orders and
car removals at a point of time are good measures of the inflows and outflows of that dealer’s
inventory, which is our primary focus.18

We focus on four to six years gasoline sedans of nonluxury brands and treat them as the
same product.19 This group of cars accounts for 12.4% of all listings on cars.com during the
sample period. We choose this group of cars for our analysis for the following two reasons.
First, the majority of all transactions of this group of cars are sold by dealers (see Figure 1
of Biglaiser et al., 2020). Second, this group of cars are relatively homogeneous compared to
older cars and luxury cars. We count each dealer’s inventory as the number of these cars. We
implicitly assume that dealers make stocking and pricing decisions for this product segment
independently of decisions for other segments. This assumption is reasonable if the dealer’s
inventory cost is additive according to Proposition 6. We also acknowledge dealers’ hetero-
geneous retail and wholesale behavior pattern due to their size difference. We consider two
groups of dealers according to their average inventories. Small dealers are those whose aver-
age inventory during the sample year is fewer than 10 cars, whereas large dealers are those
whose average inventory is between 10 and 20 cars.20

After selecting car types, we end up with 16,239 used cars listed by 259 small dealers and
15,551 listed by 133 large dealers over the course of a year. Table 1 reports the sample statis-
tics of dealer-week-level inventory and inventory change and car-level prices separately for
small dealers (Panel A) and large dealers (Panel B). On average, small dealers hold 7 units of
nonluxury four- to six-year-old sedans and large dealers hold 13 vehicles in this product seg-
ment. Moreover, the list price of smaller dealers is higher than that of large dealers.

5.3. Parametric Specification. As demonstrated in Section 4, our benchmark model can
be enriched in many ways, so we tailor the model to our empirical application. The model
that we take to the data is the model described in Subsection 4.4, which extends the baseline

18 A newly added car can come from a wholesale trade-in or dealer-to-dealer auction market, or just be allocated
from another site if the dealer is a chain store. Similarly, a removed car can be sold to an individual or another dealer
or reallocated to another site if the dealer is a chain store.

19 The brands we consider include Chevrolet, Chrysler, Dodge, Ford, GMC, Honda, Hyundai, Jeep, Kia, Mazda,
Mercury, Mitsubishi, Nissan, Pontiac, Saturn, Subaru, Suzuki, Toyota, and Volkswagen.

20 We drop 29 very large dealers whose average inventory of this particular type of car ranges from 20 to 54, in-
cluding the five CarMax stores in Ohio. It is tempting to include them in our quantitative analysis, but unfortunately,
there are too few observations and these dealers substantially differ from each other in sizes and inventory patterns.
For example, their inventory of the four- to six-year-old sedan segment ranges from 0 to 88. So, we drop them from
our analysis.
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Table 1
descriptive statistics

Panel A. Small Dealers†
Mean SD Min P25 P50 P75 Max

Inventory (dealer-week) 7.158 3.377 0 5 7 9 26
Inventory change (dealer-week) −0.038 1.482 −18 −1 0 1 11
List price ($, car listing) 11513 5399 5900 8835 10288 12988 34898
Weeks on market (car listing) 7.441 7.082 1 2 5 10 35

Panel B. Large Dealers†
Mean SD Min P25 P50 P75 Max

Inventory (dealer-week) 13.218 5.611 0 10 12 16 52
Inventory change (dealer-week) −0.127 2.339 −16 −1 0 1 12
List price ($, car listing) 11339 4229 5494 8920 10500 12990 27990
Weeks on market (car listing) 6.627 6.284 1 2 5 9 30

Notes. Data source: Cars.com. Sample selection is described in text.
†The sample of small dealers includes 13,209 dealer-week observations and 16,239 car listings.
‡The sample of large dealers includes 6,783 dealer-week observations and 15,551 car listings.

model to heterogeneous intermediaries. We allow for two types of dealers that differ in their
inventory costs and matching functions. In our data, there is a lot of variation in dealer size,
and given this, there is good reason to believe that dealers have different primitives in their
objective functions.

There are other potential features of used-car markets that we do not capture in the model
that we take to the data. We focus on a single-vehicle segment, four- to six-year-old non-
luxury sedans. For this reason, we do not further model vertical differentiation. Because of
our choice of vehicle segment, we also ignore issues related to asymmetric information. Al-
though used cars are the canonical example of a lemons market, there is more recent research
that suggests that asymmetric information problems are not severe, particularly for late model
vehicles—see Adams et al. (2011) and Biglaiser et al. (2020). Used-car dealers have a vari-
ety of channels to acquire inventories, including trade-in of new buyers, participating auctions,
etc. A dealer with low inventory may be able to order multiple units at once. Unfortunately,
we do not observe the source of dealers’ inventory addition. If a dealer adds multiple inven-
tories within a week, the data do not allow us to distinguish whether they are purchased in
one order or multiple ones. For simplicity, we keep the single-unit order assumption as in
the benchmark model. This brings the risk of the seller side outside option and surplus being
misspecified. Finally, although there is likely unobserved horizontal product taste across con-
sumers, but we cannot separately identify cars that are rejected by buyers due to a bad match
from the matching function itself because we do not observe failed dealer visits. We ignore the
role of unobserved product tastes, out an extension in Subsection 4.2.

We assume that search frictions on both the retail and the wholesale markets are summa-
rized by type-specific scaled urn-ball matching functions given as

φ j
r (θ ) = μ

j
r
(
1 − e−θ),

φ j
w(λ) = μ

j
w

(
1 − e−λ),

where μ j
r, μ

j
w > 0 are scaling parameters to capture search frictions for each type j = 1, 2, and

they ensure that the matching rates are bounded. Bounded matching rates further ensure that
we can transform the continuous-time Markov decision process described by the HJB equa-
tion (16) into an equivalent discrete-time problem using an uniformization technique (see,
e.g., Guo and Hernández-Lerma, 2009, Chapter 6). As Poisson matching rates instead of prob-
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456 li et al.

abilities, φ j
r and φ j

w can be greater than one if μ j
r or μ j

w is above 1.21 Our matching-function
choice is motivated by Peters (2000) and Burdett et al. (2001), who provide the microfounda-
tion of an urn-ball matching function as a limit result of a finite directed search game as the
number of traders goes to infinity.

We assume linear inventory costs with type-specific marginal cost parameters c j ≥ 0, for j =
1, 2, such that

c j(x) = c jx.

Notice that the linear cost specification satisfies the additive condition (31). By Proposition 6,
it is without loss to treat a multiproduct intermediary as multiple single-product intermedi-
aries.

5.4. Parameter Identification. Our model is in continuous time. Accordingly, we treat the
data as a finite sample of periodic observations of a continuous-time data-generating process.
More specifically, a continuous-time process has a realized path x(t) with t ∈ [0,T ], and our
sample consists of observations {x(0), x(), . . . , x(n)} ⊂ x([0,T ]), where  > 0 is the time
interval between two observations. We normalize  = 1 to be a week to match the data fre-
quency.

The discount rate ρ is predetermined and matches a 5% annual rate, such that

1 − e−52ρ = 5%.

The remaining parameters to be calibrated are a buyer’s utility u, matching function param-
eters (μr, μm), the buyer and seller’s respective outside options κb and κs, and the marginal
inventory cost c j for each type j = 1, 2. In the used-car setting, a buyer’s outside options in-
clude keeping their current car, buying a new car, buying an old car from other sources such
as friends or relatives, etc., or using other transportation options. The seller’s outside options
include selling the car by himself or keeping it.

To understand the challenge of model identification, notice that although the theoretical
model considers a two-sided market with three types of agents: buyers, sellers, and intermedi-
aries (dealers), who interact in retail and wholesale markets, the data we use only contain in-
formation of dealers’ inventory and list retail prices. Specifically, we do not observe wholesale
prices. We show in the following discussion how to utilize the analytical implications of the
model to identify the relevant parameters step by step. Identification is sequential, such that
in each step, we show how to express a subset of unknown parameters as a closed-form func-
tion of moments of the data and parameters that are already shown to be identified from a
previous step. Identification does not rely on and is not complicated by, the two types of deal-
ers, so we drop the dealer type indexing in the discussion.

Step 1: Matching rates. First, we show that the transition probability matrix of inventory
levels identifies the unobserved Poisson rates of matching in both markets at each inventory
level φ∗

r (x) ≡ φr(θ∗(x)), φ∗
w(x) ≡ φw(λ∗(x)), fully determining the pattern of dealers’ inven-

tory transition. Our approach resembles the standard approach in the labor search literature
(see, e.g., Menzio and Shi, 2011 and Guo, 2018 where the state variable is workers’ employ-
ment status). However, unlike the employment status that switches infrequently, an interme-
diary’s state is the inventory level, which may increase or decrease quickly.

In equilibrium, each intermediary’s inventory level follows a continuous-time Markov chain
over s + 2 states {0, 1, . . . , s + 1}, where s is given in Equation (20). The process is induced by
intermediaries optimal controls θ∗(x) and λ∗(x) in Proposition 1, such that the transition rates

21 Recall that the probability of a type- j intermediary meeting a buyer (or seller) within a small time period of
length dt > 0 is roughly φ j

r dt (or φ j
wdt).
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inventory management in decentralized markets 457

are captured by the matching rates φ∗
r (x) and φ∗

w(x). An (s + 2) × (s + 2) square matrix Q =
[Qxy] summarizes these transition rates, where each entry Qxy is given as

Qxy =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
φ∗

r (x) if y = x − 1 ≥ 0,
−[φ∗

r (x) + φ∗
w(x)] if y = x,

φ∗
w(x) if y = x + 1 ≤ s + 1,

0, otherwise.

Each column of Q contains at most three nonzero entries, reflecting the inflow and outflow
rates in Equation (21) at the corresponding inventory level.22 Therefore, using Q, the transi-
tion dynamics for the cross-sectional inventory distribution in KF equation (21) can be written
as ġt = gtQ, where gt = (gt (x))x=0,...,s+1 is a 1 × (s + 2) vector for the inventory distribution at
t, and ġt (x) is another 1 × (s + 2) vector for the law of motion. The stationary inventory distri-
bution gss thus satisfies 0 = gssQ.

If Q is observable, the matching rates are readily available. However, Q as a matrix for
Poisson transition rates does not have an immediate data counterpart. What can be com-
puted from the data is the weekly inventory transition probability matrix, denoted by another
(s + 2) × (s + 2) square matrix P = [Pxy]. Each entry of the matrix is

Pxy = Pr(Xτ+1 = y | Xτ = x), ∀x, y ∈ {0, 1, . . . , s + 1},

which is the probability that inventory level Xt changes from x to y in a week. See the two top
panels of Figure 2 for a visualized illustration of each dealer type’s inventory transition ma-
trix.

We transform the transition rate matrix Q into a weekly inventory transition probability
matrix P. For such a continuous-time Markov process, that is, a general birth-death process
over finite states, it is a known result that there is a one-to-one mapping between Q and an as-
sociated transition probability matrix P(t) over time t > 0, such that each xy-entry represents
Pxy(t) = Pr(Xτ+t = y | Xτ = x) for any x, y ∈ {0, 1, . . . , s + 1} and any time τ ≥ 0. See, for ex-
ample, Chapter 6 of Pinsky and Karlin (2010). The matrix P(t) satisfies

P(t) = etQ ≡
∞∑

k=0

tk

k!
Qk,

where Q0 = I is the identity matrix at k = 0, and Qk is the kth power of the square matrix
Q. The weekly transition probability matrix is simply P = P(1) = eQ given our normalization.
Notice that although a dealer is allowed to sell or buy at most one car at each instant, it may
sell or buy multiple cars over a week.

The empirical counterpart of P thus disciplines the matching rates {φ∗
r (x), φ∗

w(x)}s+1
x=0 with

φ∗
r (0) = 0 and φ∗

w(s + 1) = 0. Note that the empirical counterpart of the stationary distribu-
tion gss contains less information than that of P, as gss = gssP. The remaining identification ar-
gument treats these matching rates as observable. We rely on the assumed functional forms
and the equilibrium conditions to recover the parameters.

Step 2: Retail-market parameters. Second, we show that the retail prices p∗(x) and the
intermediaries’ retail-market matching rates φ∗

r (x), determined from the previous step, can
identify the retail-side parameters u, κb, and μr via the buyers’ FE condition rewritten as
Equation (13).

22 See Chapter 6 of Pinsky and Karlin (2010) for an introduction of continuous-time Markov chain.
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458 li et al.

Inventory levels are trimmed at the 99th percentile. Panel (1) plots the weekly type-specific transition matrices P j =
[P j

xy], where solid gray discs represent matrix entries in the data, colored circles represent those implied by the model,
and marker sizes correspond to entry values. In Panel (2), solid gray bars are empirical frequencies, and colored
empty bars represent model-implied steady-state probability mass functions.

Figure 2

goodness of fit: weekly transition probability matrix and inventory distribution by dealer type

Given φ∗
r (x) and the urn-ball matching function, the retail submarket tightness and the

buyer-side matching rate become nonlinear functions of μr, respectively, denoted as θ∗(x;μr)
and ψ∗

r (x;μr), satisfying

θ∗(x;μr) = ln
μr

μr − φ∗
r (x)

, ψ∗
r (x;μr) = φ∗

r (x)
θ∗(x;μr)

.

Then, the FE condition (13) can be written as

p(x) = u − κb

ψ∗
r (x;μr)

.
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Table 2
calibrated parameter values

Parameter Value Description
ρ 9.86 × 10−4 Weekly interest rate to match a 5% annual rate
u 17614 Unit utility ($)
κb 5880 A buyer’s flow outside option to search
κs 23927 A seller’s flow outside option to search

Small Large
μ

j
r 1.31 1.71 Retail-market matching function parameter
μ

j
w 3.73 8.55 Wholesale-market matching function parameter

c j 14.78 4.55 A dealer’s marginal cost of inventory ($) per week

It follows that when we observe retail prices p(x) at more than three inventory levels with suf-
ficient variations, parameters u, κb, and μr are jointly determined.

Step 3: Wholesale-market parameters. Third, we turn to the wholesale side and show that
the intermediaries’ FOCs (17) and (18) identify the wholesale-side parameters κs and μw.

Given φ∗
r (x), parameter μr, and the urn-ball matching function, the first-order derivative

φ′
r(θ (x)) in Equation (17) becomes μr − φ∗

r (x). Then, given u, κb, and μr in the previous step,
Equation (17) pins down V (x) − V (x − 1) as

V (x) − V (x − 1) = u − κb

μr − φ∗
r (x)

.

Similarly, given the wholesale-side matching rate φ∗
w(x) and the urn-ball matching function,

the first-order derivative φ′
w(λ(x)) in Equation (18) becomes μw − φ∗

w(x), which is a function
of μw. Then, Equation (18) becomes

V (x) − V (x − 1) = κs

μw − φ∗
w(x − 1)

,

which pins down κs and μw jointly.
Step 4: Marginal inventory cost. Finally, the stationary HJB equation (16) identifies the

marginal inventory cost c. Specifically, we take the first-order difference on both sides of
Equation (16), which results in an expression with c on the right-hand side being the only un-
known element.

5.5. Parameter Values. We calibrate the parameter values using the simulated method
of moments. Guided by the identification arguments, for each type j = 1, 2, we choose the
weekly inventory transition matrix P j, the cross-sectional inventory distribution gj, and the
logarithms of the average retail prices by inventory level ln pj as the targets. We select the pa-
rameters (u, κb, κs, (μ j

r, μ
j
w, c j ) j=1,2) such that they solve

min
u,κb,κs,(μ

j
r ,μ

j
w,c j ) j=1,2

∑
j=1,2

∑
m=P,g,ln(p)

‖mj
model − mj

data‖2
2,

where ‖ · ‖2 represents the L2 norm.
Table 2 reports the parameter values. Figure 2 shows the goodness of fit by comparing the

transition probability matrices and the inventory distributions. The fit is reasonable, although
the model produces slightly lower inventory levels. Interpretations of parameter values are as
follows:

We begin with parameters common to both small and large dealers. The value of u captures
the average monetary-measured utility of purchasing a four- to six-year-old nonluxury sedan.
As the outside options to search, values of buyers’ κb and sellers’ κs are flow rates per unit of
time. Examples of such outside options include buyers and sellers searching for direct trades,
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460 li et al.

Table 3
summary of equilibrium outcome by dealer type

Cross-Sectional Mean of… Relative

x p(x) φr(x) θ∗(x) T (x) Tr(x) Tw(x) Tb(x) Ts(x) surplus
Small 6.35 11226 ($) 0.69 0.76 0.74 1.44 1.55 1.09 0.30 129%
Large 10.65 11170 ($) 1.30 1.42 0.39 0.77 0.82 1.10 0.13 185%

x is a dealer’s inventory level, x = 0, 1, . . . , s; p(x) is the retail price posted by a dealer with inventory x, φr(x) is
the corresponding retail matching rate, and θ∗(x) is the associated tightness, for x ≥ 1. T (x) = 1/[φr(x) + φw(x)] is
a dealer’s expected time spent at inventory level x before it increases or decreases. Tr(x) = 1/φr(x) is a dealer’s ex-
pected time to sell a car when meeting buyers at rate φr(x), x ≥ 1. Tw(x) = 1/φw(x) is a dealer’s expected time to
gain a car when meeting sellers at rate φw(x), x ≤ s − 1. Tb(x) = 1/ψr(x) is a buyer’s expected waiting time in retail
submarket-x, x ≥ 1. Ts(x) = 1/ψw(x) is a seller’s expected waiting time in wholesale submarket-x, x ≤ s − 1. Relative
surplus is the ratio of the aggregate social surplus created by the intermediaries over the aggregate option values.

and sellers keeping the cars; see our discussion of assumptions in the model section. The val-
ues of these two parameters are indeed reasonable given our FE specification. To make sense
of the numbers, recall that if there are buyers in a submarket p, we have the FE condition
ψr(θ∗(p))(u − p) = κb. Our data frequency is weekly, so ψr(θ∗(p))/7 is a linear approxima-
tion of the daily probability of a buyer meeting a dealer, and Ep[ψr(θ∗(p))(u − p)]/7 ≈ $840
is the buyer’s daily expected payoff. By the FE condition, it is also the daily opportunity cost
he incurs. Observe in Table 3 that the average Tb is 1.09 (or 1.10) at small (or large) dealers,
which means that it takes a buyer a little over a week to buy a car on average. Since our data
frequency is also weekly, the value of κb is roughly equal to the buyer’s expected total payoff
of searching for buying a used car.

Similarly, for sellers in a wholesale submarket w, we have κs = ψw(λ∗(w))w, where w

should be interpreted as the seller’s surplus from a trade (price minus his value of owning the
car that has been normalized to be zero). By the same logic, φw(λ∗(w))/7 approximates the
daily probability of a seller meeting a dealer, and φw(λ∗(w))w/7 ≈ 3418 is roughly a seller’s
daily expected payoff by searching for selling his car. From Table 3, we see that the average Ts

is 0.30 (or 0.13) weeks at small (or large) dealers, that is, it takes a seller about one to two days
to make a sale, so the parameters implied average surplus of the seller are roughly between
$3, 000 and $7, 000. We interpret the difference between large and small dealers as the differ-
ence in acquisition sources, speed, and convenience. For example, cars are acquired through
trade-ins and wholesale auctions, both of which vary across dealers.

We turn to the type-specific parameter values. Qualitatively, their relative scales are as ex-
pected. Specifically, small dealers face greater search frictions than large dealers in both re-
tail and wholesale markets, reflected by the scaling parameters in matching functions μ1

r < μ2
r

and μ1
w < μ2

w; small dealers also have a higher marginal cost of inventory such that c1 > c2.
Furthermore, we have μ j

r < μ
j
w, for j = 1, 2, so it is generally easier for both types of dealers

to find sellers in wholesale markets than meeting retail buyers. These parameter differences
jointly capture the heterogeneity in inventory distributions. The marginal inventory costs are
roughly $15/week for small dealers and $5/week for large dealers. Dealers typically debt-
financed their inventory, and our calibrated costs correspond to the weekly cost of funds on
a $10,000 loan with 5% annual interest (which is about $10/week). However, these inventory
marginal costs are relatively low, which implies that dynamic pricing and inventory manage-
ment are more about search frictions and uncertainty than literal holding costs. The inventory
cost parameter absorbs remaining dealer heterogeneity and other factors that affect dealers’
flow revenue besides market frictions; however, these factors appear to be small.

5.6. Small versus Large Dealers. This section explores the difference between small and
large dealers. From Table 2, we learn small and large dealers differ in their inventory costs and
search and matching technologies. This section takes a closer look at the difference between
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inventory management in decentralized markets 461

small and large dealers and the corresponding welfare implications. We report selected equi-
librium statistics in Table 3.

First, we compute the average time that a large (small) dealer spent at inventory level x. For
each dealer type j = 1, 2, the time spent at inventory level x before it jumps is an exponential
random variable with expectation T j(x) = 1/[φ j

r (x) + φ
j
w(x)]. Given the stationary distribu-

tion gj
ss, the cross-sectional mean is simply T j = ∑s j+1

x=0 gj
ss(x)T j(x). It is clear that large deal-

ers spend less time at each x, and their inventory levels churn faster than small dealers’. On
average, small dealers see changes in inventory levels every five days (T 1 = 0.74), and large
ones need three days (T 2 = 0.39).

We take a closer look and separately examine the retail side and the wholesale side. In re-
tail, suppose that a type- j dealer stays in submarket-x until meeting with a buyer, then the ex-
pected waiting time is T j

r (x) = 1/φ j
r (θ∗(x)), for j = 1, 2. Similarly, in wholesale, suppose that

a type- j dealer stays in submarket-x until meeting with a seller, then the expected waiting
time is T j

w(x) = 1/φ j
w(λ∗(x)), for j = 1, 2. Not surprisingly, small dealers need to wait longer

than large ones on both sides. However, despite the relatively small difference in μ
j
r , large

dealers sell almost twice as fast as small ones, thanks to the more considerable difference in
μ

j
w and large dealers’ low inventory costs.
Next, we shift our focus to buyers in retail markets and sellers in wholesale markets, respec-

tively. Recall that our data do not contain information about buyers and sellers. However, our
model predicts buyers’ and sellers’ behavior patterns based on information about intermedi-
aries. The expected waiting time for a buyer in type- j dealers’ retail submarket x is T j

b (x) =
1/ψ j

r (θ∗(x)), for x = 1, . . . , s + 1; a seller’s analog is T j
s (x) = 1/ψ j

w(λ∗(x)), for x = 0, . . . , s.
Given the inventory distribution gt at t, we can calculate the measure of buyers or sellers in
each submarket, such that

gb
t (x) = gt (x)θ∗(x), gs

t (x) = gt (x)λ∗(x), ∀x = 0, 1, . . . , s.

Normalizing yields the probability distributions conditional on submarkets being active, such
that gb

t (x)/
∑s+1

y=1 gb
t (y) for x = 1, . . . , s + 1 and gs

t (x)/
∑s

y=0 gs
t (y) for x = 0, . . . , s. We use these

distributions at the steady state to calculate the cross-sectional means of T j
b (x) and T j

s (x) in
Table 3. As mentioned in the previous section, on average, it takes buyers a similar amount of
time to search for either type of dealer, and sellers need less time to search for a dealer, espe-
cially a large one.

5.7. Gains from Trade due to Dealers. We examine the fraction of gains from trade that is
created by used-car dealers. We calculate the relative surplus as follows: At each moment t,
given an inventory distribution gt , the gross value flow created by the dealer sector is

Gt =
s+1∑
x=0

gt (x)[φr(θ∗(x))u − c(x)].(36)

In words, this is the likelihood of a match multiplied by the buyer utility created minus the
holding costs for a given inventory level x, integrated over the inventory distribution. The to-
tal outside-option value flow is

Ct =
s+1∑
x=0

gt (x)[θ∗(x)κb + λ∗(x)κs] =
s+1∑
x=0

[gb
t (x)κb + gs

t (x)κs],(37)

which captures the values to buyers and sellers if no trade occurs for different inventory lev-
els.
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462 li et al.

Consider the relative (gross) value at t as Gt/Ct . We compute them for both large and small
dealers at the steady state where ġt = 0. The results are reported in Table 3. Large dealers
make significantly more welfare contribution than small dealers. From Tables 2 and 3, we see
that the large dealers’ advantage in improving social welfare mainly comes from two factors.
First, they have lower inventory costs. Second, they have superior search and matching tech-
nology, making them much more efficient at allocating cars between sellers and buyers. Be-
tween these two factors, the crucial one is the difference in search and matching technologies.
To see this, we simply remove the inventory costs by setting c1 = c2 = 0. Keeping other val-
ues unchanged, we resimulate the model to obtain the respective stationary equilibrium with-
out any inventory costs. At the zero-cost equilibrium, both small and large dealers’ average in-
ventory levels increase by more than 3 units. However, the change in the relative surplus cre-
ated by either type of dealers is insignificant. Specifically, the increase in small dealers’ surplus
creation is only 1 percentage point, and the change is even less for large ones by about 0.4
percentage point. Therefore, we conclude that large dealers’ greater contribution to welfare is
due to their search technology.

5.8. Transition Paths. Finally, we examine market transitions after changes to model prim-
itives. This is particularly relevant for the used-car market since the market underwent sud-
den changes in the wake of the COVID-19 pandemic in 2021 and 2022. In 2021, used-car in-
ventories decreased substantially, and prices rose.23 Journalists and industry professionals at-
tributed the changes in the used-car market to many factors, including disruption that spilled
over from the supply chain issues in the new-car market and changes in underlying demand
and the behavior of used-car shoppers. For the former, scarcity among new cars likely dis-
rupted supply into the used-car market (as consumers held their cars longer), and consumers
who would typically be new-car customers were substituted to the used-car market due to in-
sufficient selection and high prices for new cars. For the latter, internal migration, generous
fiscal and monetary policy, and work-from-home prompted some consumers to value cars dif-
ferently.

We examine the implications of inventory management to changes in a market by plotting
the transition dynamics after a 10% increase in each of the models’ primitives. Figures 3 and
4 plot the resulting dynamics of three type-specific statistics: (a) average inventory level, (b)
average retail price, and (c) relative surplus created. Observe that, in each experiment, (a)
evolves continuously, whereas the paths of (b) and (c) see jump at the time of shock t = 0. The
reason is that although the equilibrium policies adjust instantaneously upon the shock, which
causes the jumps in (b) and (c), the cross-sectional inventory distribution evolves gradually ac-
cording to the updated KF equation (21) induced by the new equilibrium policies, resulting in
a continuous path of (a).

We begin with the responses to changes in market frictions in Figure 3. The first experiment
considers the impact of increasing the buyer’s outside option κb by 10%, which is essentially
a negative demand shift. Buyers search less, so fewer inventories are necessary. As a result,
dealers cut retail prices and wholesale order frequencies, gradually lowering their inventories.
The relative surplus declines due to the direct effect of increasing κb and the indirect effect as
fewer transactions are made through the dealer sector. In the second experiment, we increase
the seller’s outside option κs by 10% to capture a negative supply shift. As a response, deal-
ers will order at a lower speed. Interestingly, the impact on the average inventory is starkly
heterogeneous among dealers. To the large dealers, the impact can be ignored, and the aver-
age inventory eventually increases slightly, whereas to the small dealers, it is nontrivial, which
means that the large dealers must proportionally decrease both the buying and selling speed,
keeping the average inventory unchanged. This is also reflected in the difference between
small and large dealers’ average prices. For large dealers, the average retail price jumps less,

23 See the CNBC report from the following link. https://www.cnbc.com/2020/10/15/used-car-boom-is-one-of-
hottest-coronavirus-markets-for-consumers.html
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In each panel, the thin blue line is for the small dealers ( j = 1), and the thick red line the large ones ( j = 2); time t
is on the horizontal axis, and the vertical axis shows the percentage deviation from the baseline steady state before
any parameter change. Each row corresponds to a shocked parameter, and each column contains the transition paths
of an equilibrium statistic. Time of shock is t = 0. Before t = 0, the economy is at the baseline steady state with a
stationary-type-specific inventory distribution gj

ss. At t = 0, a parameter (pair) permanently increases by 10%. After
t = 0, the distributions evolve in continuous time.

Figure 3

responses to permanent changes in search frictions: type-specific transition paths of average inventory,
average retail price, and relative surplus. at t = 0, matching parameter kb, ks, μ

j
r , or μ j

w permanently increases
by 10%

meaning a smaller decline in the retail transactions rate; the transmission of the change from
the wholesale side to the retail markets affects the large dealers less, mainly due to their less
frictional search and matching technologies.

The next two experiments (third and fourth rows of Figure 3) examine the effect of a re-
spective 10% increase in dealers’ matching-function parameters. We simultaneously increase
small dealers’ retail matching-function parameter μ1

r and large dealers’ μ2
r . Matching efficien-

cies in retail markets improve for both dealers, and meeting buyers becomes easier. Dealers
want to increase inventory holdings to avoid greater stockout risks and charge higher retail
prices; small dealers respond more in inventory levels and prices. Retail transactions become
more frequent despite the higher retail prices. Upon impact, smaller dealers’ retail prices
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464 li et al.

See Figure 3 for figure notes.

Figure 4

responses to a permanent increase in unit utility u or inventory cost c j : type-specific transition paths of
average inventory, average retail price, and relative surplus

jump up more, partially offsetting the benefit of increased retail trading rates, which explains
the initial small dip in the relative surplus created by small dealers. Dealers of both types are
able to contribute more to welfare eventually.

A more striking result shows in the experiment of improving the wholesale matching as a
10% increase in small and large dealers’ μ1

w, μ2
w, respectively. In response, large dealers re-

duce the average inventory holdings, and small ones do the opposite. The asymmetry occurs
due to the interactions between frictions in retail and wholesale markets. For small dealers,
the dominating effect of reduced frictions in wholesale is that they can better “insure” them-
selves against stockout risks by holding more inventories, which allows them to set lower re-
tail prices. For large dealers, wholesale-side frictions are low even before the impact, and the
dominating effect of smoother wholesale transactions is to reduce large dealers’ need to hold
inventories to cut inventory costs. In either dealer type’s case, improved matching in whole-
sale spills over to retail markets, such that dealers post lower retail prices to increase retail
rates. Consequently, both dealers create more surplus.

Now we move to the responses to changes in utility and inventory cost in Figure 4. The pa-
rameter u captures the buyer’s lifetime utility of owning a used car. In our model, when the
buyers’ utility of trading through the dealer sector increases, more buyers enter retail markets
and this increases dealers’ selling speed. To respond, dealers (i) increase the retail price and
(ii) hold more inventory to slow down the rise of the stockout risk.

Finally, we consider a shock to the dealers’ inventory cost. If dealers’ inventory cost perma-
nently increases, they will immediately adjust their retail and wholesale policy to reduce their
inventory levels. To boost the selling speed, the retail price immediately falls. This is the di-
rect effect of increasing inventory cost on the average retail price. An indirect effect will take
place in the long run: Dealers’ inventories gradually decrease over time, and the retail prices
increase due to the rise of the stockout risk accordingly. In the long run, the average retail
price may be either higher or lower than the level prior to the shock, depending on the com-
petition between the two effects. In terms of welfare, the dealer sector’s welfare contribution
jumps up immediately following the inventory shock. Although increasing inventory cost has
a direct negative effect on the dealer sector’s welfare contribution, in the short run, this ef-
fect is dominated by the positive effect due to the jump of the selling speed. However, in the
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inventory management in decentralized markets 465

long run, as the average inventory declines, the selling speed follows, and the temporary wel-
fare bump vanishes.

Which of these changes to model primitives best reflects the outcomes observed in the wake
of the COVID-19 pandemic in 2021 and 2022? Two of the changes to model primitives gen-
erate an opposite comovement in inventory levels and prices, like the used-car market expe-
rienced in 2021 and 2022. First, an increase in inventory cost (second row of Figure 4) leads
to lower inventories and greater long-run retail prices. However, there do not seem to be any
major changes to inventory costs during this time, so this mechanism seems like an unlikely
source of market disruptions observed during this time. In fact, inventory costs may have de-
creased due to loosening monetary policy. Alternatively, a 10% increase in κs generates de-
creased inventory (particularly for our small dealers) and higher retail prices. This seems like
a much more likely story, as supply problems with the new car market spilled into the supply
of wholesale used cars. Our model and calibration find evidence that changes to used-car sup-
ply generated reduced inventory and increased prices in 2021 and 2022.

6. concluding remarks

This article fills a gap between several active areas of literature: one on search-theoretic
models of intermediaries and one on pricing and inventory control. We highlight the role of
inventory dynamics in shaping retail price dynamics and dispersion in a search model. The
natural combination of equilibrium search and inventory management has a significant logi-
cal consequence. Prices fluctuate in response to the inventories change, as intermediaries ad-
just prices to sell inventory or restock. The model is extended in various directions. We cal-
ibrate the model using used-car dealer data from Ohio and quantitatively highlight the im-
portant interaction between search frictions and inventory dynamics. The calibrated model is
then used to study a number of important roles of used-car dealers’ inventory management
practice, such as its welfare contributions to the economy and its effect in shaping transition
dynamics caused by shocks of important market characteristics.

appendix A: proofs

A.1. Proofs. Proof of Lemma 1. Suppose that the marginal value of holding one more
unit of inventory is positive at x, or V (x) − V (x − 1) > 0. We show that V (x + 1) − V (x) ≤
V (x) − V (x − 1). Consider, at time t, an intermediary with xt = x units of inventory that
adopts the optimal policy of its (xτ + 1)-inventory self at τ ≥ t until the first time its inventory
drops to x − 1. Clearly, such a policy is suboptimal for this intermediary with xt = x. Formally,
suppose that it employs the following policy � ≡ {θτ , λτ }τ≥t that generates an inventory pro-
cess {xτ }τ≥t . The policy solves the problem (7) for the inventory being xτ + 1 until the first in-
stant when its true inventory drops to x − 1. Afterward, the intermediary employs the optimal
policy. Denote

T ≡ inf{τ ≥ t : xτ ≤ x − 1}.

Note that T − t is the first passage time from state x to state x − 1 of the Markov process in-
duced by policy �. Crucially, T − t is a continuous random variable with nonnegative support,
and Pr(T − t > ε) > 0 for an arbitrary ε > 0. The intuition is that, due to search frictions, it
takes time for inventory levels to change, regardless of whether the intermediary’s policy is
optimal or not.

Denote the associated lifetime profit to be V�(x), then we must have

V�(x) = V (x + 1) + E

{∫ T

t
e−ρ(τ−t)[c(xτ + 1) − c(xτ )]dτ + e−ρ(T−t)[V (x − 1) − V (x)]

}
,
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466 li et al.

where the expectation is taken over the random time T . V�(x) differs from V (x + 1) in two
aspects. First, in time interval [t,T ), the flow inventory cost is c(xτ ) instead of c(xτ + 1). Sec-
ond, after the transaction at time T , the continuation value is V (x − 1) instead of V (x). Be-
cause policy � is suboptimal, V�(x) ≤ V (x); and therefore,

V (x + 1) − V (x) ≤ E
{
− ∫ T

t e−ρ(τ−t)[c(xτ + 1) − c(xτ )]dτ + e−ρ(T−t)[V (x) − V (x − 1)]
}

< V (x) − V (x − 1).(A1)

The second inequality holds because (i) c(·) is increasing and (ii) E[e−ρ(T−t)] ∈ (0, 1). As a
consequence, V (x) − V (x − 1) decreases in x when it is positive. Note that the first inequality
in (A1) also implies that whenever V (x) − V (x − 1) turns negative, then so does V (x + 1) −
V (x). �

Proof of Proposition 1. Recall that both φr(·) and φw(·) are increasing. From Lemma 1,
both V (x) − V (x − 1) and V (x + 1) − V (x) in FOCs (17) and (18) are decreasing in x, so the
first part of the proposition immediately follows. The second part of the proposition is a direct
consequence of the combination of part 1 and conditions (13) and (14). �

Proof of Proposition 2. First, we prove the existence and uniqueness by solving for the
stationary probability distribution gss. In equilibrium, a dealer’s inventory follows an general
birth-death process {xt} over finite states, induced by the equilibrium policy θ∗(·) and λ∗(·).
For a general birth-death process, conditions for the existence and uniqueness of a stationary
probability distribution are standard, and so, is the probability mass function’s form. See, for
example, Chapter 6 of Pinsky and Karlin (2010) for reference. Nonetheless, we show it here
for completeness. The stationary distribution gss satisfies condition (21) and can be solved re-
cursively. At x = 0, we have 0 = φr(θ∗(1))gss(1) − φw(λ∗(0))gss(0), or

gss(1) = φw(λ∗(0))
φr(θ∗(1))

gss(0).

Consequently, at x = 1, 0 = φw(λ∗(0))gss(0) + φr(θ∗(2))gss(2) − [φr(θ∗(1)) +
φw(λ∗(1))]gss(1), or

φr(θ∗(2))gss(2) = [φr(θ∗(1)) + φw(λ∗(1))]gss(1) − φw(λ∗(0))gss(0)

= φw(λ∗(1))gss(1)

gss(2) = φw(λ∗(1))
φr(θ∗(2)) gss(1) = φw (λ∗(1))φw (λ∗(0))

φr(θ∗(2))φr(θ∗(1)) gss(0).

The general formula follows as

gss(x) = φw (λ∗(x−1))
φr(θ∗(x)) gss(x − 1)(A2)

= gss(0)
∏x

i=1
φw (λ∗(i−1))
φr(θ∗(i)) , ∀x ≥ 0.(A3)

Clearly, with s being the base level of the stock defined in Equation (20), gss(x) = 0 for any
x > s + 1 because φw(λ∗(x − 1)) = φw(0) = 0, and Equation (A2) implies gss(x) = 0. Plugging
(A3) into the constraint

∑∞
x=0 gss(x) = 1 yields the expression for gss(0). A unique distribution

exists if and only if gss(0) is well defined, which requires

0 <
s+1∑
x=1

x∏
i=1

φw(λ∗(i − 1))
φr(θ∗(i))

< ∞,
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inventory management in decentralized markets 467

and it naturally holds when s < ∞.
Second, we prove that the steady-state distribution is unimodal. The result holds trivially if

1 = s, that is, the distribution is over two points. If 1 < s, there are at least three inventory lev-
els with positive probability mass. Rearranging Equation (21) yields

φw(λ∗(x))gss(x) − φw(λ∗(x − 1))gss(x − 1) = φr(θ∗(x + 1))gss(x + 1) − φr(θ∗(x))gss(x).(A4)

Because φw(λ∗(x)) decreases in x, the left-hand side of Equation (A4) is less than
[gss(x) − gss(x − 1)]φw(λ∗(x − 1)). Because φr(θ∗(x)) increases in x, the right-hand side of
Equation (A4) is greater than [gss(x + 1) − gss(x)]φr(θ∗(x)). Therefore, we have [gss(x) −
gss(x − 1)]φw(λ∗(x − 1)) ≥ [gss(x + 1) − gss(x)]φr(θ∗(x)). That is, for any x ≥ 1, whenever
gss(x + 1) ≥ gss(x), we have gss(x) ≥ gss(x − 1), and whenever gss(x) ≤ gss(x − 1), we have
gss(x + 1) ≤ gss(x). So, the steady-state probability mass function gss(·) is single-peaked, or
unimodal. �

The omitted proof of Proposition 4. The argument of the existence and uniqueness is
similar to the proof of Proposition 2. We solve for the stationary probability distribution re-
cursively. To ease notation, we suppress the super- and subscripts of gm

ss in this step and let
φr(x), φw(x) represent φr(θ∗(x)), φw(λ∗(x)), respectively.

The KF equation at the steady state can be written as follows;

g(0)φw(0) = g(1)φr(1),

g(1)[φr(1) + φw(1)] = g(2)φr(2),

...

g(s)[φr(s) + φw(s)] = g(s + 1)φr(s + 1),

g(s + k)φr(s + k) = g(s + k + 1)φr(s + k + 1), ∀k = 1, . . . ,S − s + 1,

g(S)φr(S) = ∑s
x=0 g(x)φw(x) + g(S + 1)φr(S + 1),

g(S + k)φr(S + k) = g(S + k + 1)φr(S + k + 1), ∀k ≥ 1.

Stationarity requires that g(S + k) = 0, ∀k ≥ 1. We also observe that

g(x + 1)φr(x + 1) = ∑x
i=0 g(i)φw(i), ∀x = 1, . . . , s;

g(s + 1)φr(s + 1) = g(s + k)φr(s + k) = g(S)φr(S), ∀k = 1, . . . ,S − s.

The system thus becomes functions of g(S), such that

g(s + k) = g(S) φr(S)
φr(s+k) , ∀k = 1, . . . ,S − s,

g(s) = g(s + 1) φr(s+1)
φr(s)+φw (s) = g(S) φr(S)

φr(s)+φw (s) ,

g(s − k) = g(s − k + 1) φr(s−k+1)
φr(s−k)+φw (s−k)

= g(S) φr(S)
φr(s)+φw (s)

φr(s)
φr(s−1)+φw (s−1) . . .

φr(s−k+1)
φr(s−k)+φw (s−k) , ∀k = 1, . . . , s,

where φr(0) = 0. The system can be written more concisely as

g(x) = g(S)
S−1∏
i=x

φr(i + 1)
φr(i) + φw(i)

, ∀0 ≤ x < S,
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Table A1
time on market versus list price

Small Dealers Large Dealers
(1) (2) (3) (1) (2) (3)

log (list price) 0.456 0.418 0.508 0.391 0.343 0.557
(0.027) (0.026) (0.042) (0.027) (0.026) (0.041)

log (mileage) 0.155 0.166 0.178 0.064 0.075 0.109
(0.014) (0.013) (0.015) (0.013) (0.012) (0.014)

Week FEs � � � �
Car model FEs � �
# of observations 16239 16239 16239 15551 15551 15551
R2 0.025 0.083 0.100 0.026 0.089 0.106

Note: Dependent variable is the log of weeks on market of a car. We use � to differentiate additional controls.

with φw(i) = 0 if i ≥ s + 1, and φr(0) = 0. Applying the additional constraint
∑

g(x) = 1
yields

g(S) =
(

1 +
S−1∑
x=0

S−1∏
i=x

φr(i + 1)
φr(i) + φw(i)

)−1

.

�

A.2. Descriptive Statistics Supporting Directed Search. This appendix examines the rela-
tionship between a car’s time on market and list price. The directed search doctrine relies on
a positive relationship between the list price and time to sell. Table A1 reports the results of
the regressions of the log of a car’s weeks on market on the log of the car’s list price and
other controlling variables. Across all specifications with or without the weekly fixed effects
and car model fixed effects, the relationship between the time on market and the price is sig-
nificantly positive.
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