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Abstract

We present a directed search model of intermediaries with dynamic inventory and
revenue management. Buyers purchase goods produced by sellers through interme-
diaries. Search frictions create demand uncertainty faced by each intermediary and
make instantaneous replenishment impossible. To profit from the stochastic demand-
supply misalignment, intermediaries hold inventory and employ inventory-based
pricing and ordering policies. In equilibrium, when inventory is high, an intermedi-
ary posts a lower retail price to speed up sales and depresses wholesale price to slow
down purchases. We characterize the evolution dynamics of inventory holdings and
their steady-state distribution across intermediaries. We consider several extensions
including multi-unit wholesale order, product differentiation, and heterogeneous in-
termediaries. Finally, we apply our framework to used-car dealer data from Ohio. We
measure important unobservable characteristics of the decentralized markets, quanti-
tatively evaluate the welfare consequence of used-car dealers’ inventory management
practice, and examine several policy-relevant transition dynamics due to the changes
in market characteristics.
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1 Introduction

Intermediaries play a prominent role in well-functioning markets. According to Spul-
ber (1996), about a quarter of U.S. economic activity has been contributed by interme-
diaries. A common rationale of intermediation is to mitigate search frictions (see, e.g.
Rubinstein and Wolinsky, 1987; Gavazza, 2016), but intermediaries still face uncertain
demand and uncertain supply when search frictions cannot be fully eliminated. Such
uncertainty leads to stochastic misalignment between idiosyncratic demand and supply,
necessitating intermediaries to hold inventory and manage revenue through dynamic
pricing policies. This observation presents a challenge to canonical decentralized-market
intermediation models, which do not account for inventory management or its interaction
with market frictions.

This paper develops a tractable equilibrium model where intermediaries face search
frictions in both retail and wholesale markets and manage inventory. It highlights the
interplay between multiple important economic forces related to inventory management
that have welfare implications. The model generates inventory and price dynamics and
distributions consistent with real markets. As a demonstration, we calibrate the model
to the used-car market to measure important unobservable market characteristics, such
as inventory costs and the quantitative importance of search frictions. We also quan-
titatively evaluate the welfare contribution of used-car dealers. Our empirical exercise
generates two main findings. First, the welfare contribution of dealers is significant, large
dealers almost double the surplus in the trade for used cars. Second, we find that actual
inventory holding costs are small, and incentives for inventory management come from
search frictions and resulting uncertainty dealers have about future tradings.

We borrow elements from the directed on-the-job search literature a Iz Menzio and Shi
(2011) to model intermediaries” dynamic inventory management and pricing in the pres-
ence of market frictions in both demand and supply. Following the literature on frictional
intermediation, we assume that it takes time for buyers and sellers to meet intermediaries
in both retail and wholesale markets. At any time, each intermediary decides on a retail
price and a wholesale price given its inventory level. Search is directed by prices in the
following sense. In retail markets, buyers observe all retail prices and decide the set of
intermediaries to seek. Analogously, in wholesale markets, sellers observe all wholesale
prices and decide the set of intermediaries to search for. The model shares some flavor
of Chamberlin’s monopolistic competition insight: each intermediary faces a downward-
sloping demand curve in retail markets and an upward-sloping supply curve in whole-
sale markets, but each intermediary is negligible in the sense that it can ignore its impact

on, and hence reactions from, other intermediaries, making each intermediary’s dynamic



pricing and inventory management decision a monopolistic control problem. Interme-
diaries face idiosyncratic uncertainty originating from search frictions in both retail and
wholesale markets; their individual inventory levels evolve stochastically, resulting in
cross-sectional heterogeneity. Despite this complexity, the model remains tractable, en-
abling us to solve each agent’s equilibrium policy function separately and characterize
the inventory distribution’s law of motion and its stationary limit. This simple structure
makes the model an ideal platform to perform counterfactual experiments to understand
the transitory and permanent effects of various important shocks.

In equilibrium, an intermediary’s optimal pricing rules in retail and wholesale are
deterministic functions of the inventory level. Pricing affects trading speed in respective
markets and thus has stochastic influences on future inventory level. When inventory
level is high, the intermediary charges a low retail price to speed up sales, and it offers
a low wholesale price and waits for a willing seller. When inventory level is low, the
intermediary charges a high retail price and slows down sales, and it also offers a high
wholesale price to replenish faster. That is, the optimal retail and wholesale prices co-
move, and intermediaries profit from active price adjustments to reduce idiosyncratic
misalignment in demand and supply. Consequently, high inventory is more likely to fall,
and low inventory is more likely to rise. As such, each intermediary’s inventory follows
a controlled stochastic process, giving rise to a stationary cross-sectional distribution in
the steady state.

We consider a few extensions of the baseline model and show that the general in-
sight applies in richer settings. In the extension that allows for multiple wholesale units,
the familiar (s, S)-rule for inventory acquisition policy naturally emerges in equilibrium.
Other extensions consider product or intermediary heterogeneity; the model’s tractability
allows us to incorporate these features without altering the equilibrium structure.

As a demonstration, we apply our theory to used-car dealer inventory management
and pricing to illustrate how to use our model to perform quantitative analysis. We have
the access to data from an online used-car platform that contains weekly information of
used-car dealers’ inventories and list prices. To the best of our knowledge, we are the first
to quantitatively examine intermediaries” inventory and pricing in a large decentralized
market. The used-car industry is a natural laboratory to study the relationship between
inventory and pricing in two-sided decentralized settings. Car dealers face inventory
costs, dealers can adjust prices quickly, the wholesale market is relatively liquid, and a
majority of used-car sales happen through dealers with a magnitude of tens of millions
annually.! Moreover, the used-car industry is highly decentralized. Used-car dealers face

!We do not consider adverse selection in this paper. Although used cars are the canonical example of
a lemons market (Akerlof, 1970), there is more recent research that suggests asymmetric information prob-



substantial uncertainty and frictions in both selling and buying cars.

We detail how to identify the model primitives using panel data on dealer inventory
and retail prices. We calibrate the model to the most popular and relatively homogeneous
car category in our sample: 4-6 year-old non-luxury sedans. We allow for dealer hetero-
geneity and attribute the size difference among used-car dealers to differential character-
istics such as matching efficiencies and inventory costs, which are not directly observed.
We also quantify the welfare contribution of car dealers. We find that large dealers are able
to create more surplus than small dealers by facilitating more tradings, and the difference
is mainly due to their differential search and matching efficiency, not an inventory cost
advantage. Finally, we conduct experiments with the calibrated model by making a 10%
permanent change to each of the model parameters, one at a time, and analyze the transi-
tion dynamics of inventory and price. First, transitions are sluggish due to the stickiness
in inventory adjustments resulting from quantitatively important matching frictions. Sec-
ond, most changes to the parameters cannot rationalize the large changes to the used car
industry in the wake of the COVID-19 pandemic. Our conclusion is that the decreased
inventory and increased prices in 2021 and 2022 were caused by decreased supply, as
opposed to changes in matching efficiency, demand, or inventory costs.

Related Literature and Contribution. Our paper contributes to the literature on inter-
mediaries’ role of mitigating search frictions. There are numerous theoretical studies on
this topic in various settings. See, e.g., Rubinstein and Wolinsky (1987), Rust and Hall
(2003), Duftie et al. (2005), Watanabe (2010), Wright and Wong (2014), Nosal et al. (2019),
and Hugonnier et al. (2020, 2022). This theoretical hypothesis has also been supported
by recent empirical research. See, e.g., Gavazza (2016) and Salz (2017). We recommend
Gavazza and Lizzeri (2021) for a comprehensive survey of this literature. Our novelty is
to introduce intermediaries” inventory and revenue management and study (i) their im-
plications on individual-level inventory and price dynamics and (ii) their roles in shaping
the cross-sectional distributions and evolution dynamics in the aggregate. Our model of-
fers new empirical implications such as the relationship between inventory and retail and
wholesale prices, and the co-movement of the retail and wholesale price time series.

We are certainly not the first to add inventory into search models. Many previous
studies focus on the scale effect of holding multiple inventories and the corresponding

lems are not severe, particularly for late model vehicles — see Adams et al. (2011) and Biglaiser et al. (2020).
Also, a literature on informational intermediaries demonstrates that, both theoretically and empirically, one
of the most important functions of car dealers is to mitigate (if not fully resolve) information asymmetry
between buyers and sellers. See, e.g., Biglaiser (1993), Lizzeri (1999), and Biglaiser et al. (2020). The basic
argument is that dealers have the expertise to effectively detect lemons, and they have the incentive not to
sell lemons due to the standard reputation concerns.

2This is in contrast to new car dealers, who have long-term relationships with manufacturers and with
much less uncertainty regarding inventory.



benefit to the intermediaries. For instance, Johri and Leach (2002), Shevchenko (2004)
and Smith (2004) introduce consumer preference heterogeneity and highlight the benefit
of holding multiple units of inventory to satisfy diverse preferences. Watanabe (2020)
attributes the emergence of intermediaries to their low inventory costs. In a recent paper,
Rhodes et al. (2021) introduce multiple products and study the optimal portfolio choice
of intermediaries.

While most previous studies adopt random search models and restrict their attention
to the steady state of the economy, our paper explores a more tractable directed search
approach a Ia Menzio and Shi (2011) that exploits directed search and block recursivity.3
This tractability enables a straightforward characterization of the equilibrium inventory
and price dynamics and a transparent discussion of the main trade-off of inventory man-
agement in the presence of search frictions both at and off the steady state. In addition,
our model can easily accommodate rich heterogeneities and even aggregate uncertainty
and transition dynamics, making it a tractable tool for applications.

Our paper also contributes to the literature on inventory management and pricing.
While the idea to combine pricing and inventory management of consumption goods
was first proposed by Whitin (1955), few studies have been done to understand the im-
pact of these practices on equilibrium price dynamics and dispersion in a competitive
environment.* See a recent survey by Chen and Simchi-Levi (2012). Also, there is a fi-
nance literature utilizing the similar continuous-time Markov chain technique to discuss
dealers’ optimal inventory-contingent pricing in equity security markets. The focus is to
understand the existence of ask-bid spread and why securities’ transaction prices deviate
from their fundamentals through the lens of the inventory channel. Most papers focus on
a monopolist dealer’s dynamic decision problem, and the demand and supply of securi-
ties are often assumed to be exogenous. See, e.g., Amihud and Mendelson (1980), Stoll
(1978), and Ho and Stoll (1981). One exception is Ho and Stoll (1983), which considers a
model with two dealers trading two stocks. The current paper differs from these models
by providing a tractable equilibrium search-and-matching framework to study inven-
tory management with multiple dealers and endogenous arrivals of buyers and sellers.
Our model can easily incorporate dealers” heterogeneity and conduct quantitative anal-
ysis, study the impact of search frictions in retail and wholesale markets, and analyze
endogenous spill-over effects between the demand and supply sides. To the best of our
knowledge, our paper is the first one that fills the gap between the literature on dynamic

3This tractable framework has been successfully applied in various contexts. We refer readers to Wright
et al. (2017) for a comprehensive survey of the literature.

4One exception is the literature that combines demand uncertainty and costly capacity a la Prescott (1975)
to generate price dispersion and inventory holding. See, e.g., Bental and Eden (1993) and Deneckere et al.
(1996).



inventory management and equilibrium search theory.”

Finally, our model generates price dispersion in a search-theoretic model of interme-
diates’” inventory management without any ex-ante heterogeneity. The price dispersion
emerges as a pure-strategy equilibrium. It is an addition to the search-theoretic literature
aiming to rationalize the well-documented empirical fact that observationally equivalent
products are sold at different prices in many industries. The literature typically (i) re-
quires buyers with (essentially) heterogeneous information (Burdett and Judd 1983, and
Stahl 1989) or sellers with heterogeneous cost or visibility (Reinganum 1979) to generate
price dispersion in mixed-strategy equilibria,® or (ii) relies on non-stationarity of search
(Coey et al. 2020). See Kaplan and Menzio (2015) for a recent study and Baye et al. (2006)
for a survey of the literature.

Organization. The rest of the paper is organized as follows. Section 2 introduces the
theoretical model. Section 3 characterizes the equilibrium and derives empirical implica-
tions. Section 4 study some extensions of the benchmark model. Section 5 calibrates the
model using the data from used-car markets. Extensions of the baseline model are in Sec-
tion 4. Section 6 concludes. Omitted proofs are relegated to Appendix A. Supplementary
empirical evidences are provided in Appendix B.

2 Model

2.1 Environment

We consider a continuous-time model with infinite horizon; i.e., the calendar time t € R;..
The economy is populated by buyers, sellers, and intermediaries.

Agents. There is a large pool of atomistic buyers and sellers. Each seller has a unit supply
of the indivisible (consumption) good, and he receives zero utility by consuming the good
by himself. Each buyer has a unit demand of the good, and by consuming the good, his
utility is u > 0. A buyer leaves the market after his demand is satisfied and a seller leaves
the market whenever his good is sold. To maintain the size of the potential buyers and
sellers pool, we assume a new buyer (seller) arrives whenever an existing buyer (seller)

SContemporaneous with our paper, Yang and Zeng (2021) consider trade between dealers and deal-
ers’ inventory choices into the framework of Dulffie et al. (2005) and explore the equilibrium multiplicity.
Colliard et al. (2021) propose a stylized three-period dealer network model and examine the joint effect
of dealers’ network connections and inventory management on prices and allocations in over-the-counter
markets.

®The qualification “essentially” is added because the heterogeneous information structure can be endo-
genized by adding a stage of costly information acquisition of homogeneous consumers as in Burdett and
Judd (1983).



leaves. Despite gains from trade, buyers and sellers face some obstacles to trade, creating
a role of intermediaries. Our focus is to model the equilibrium intermediated transaction
mechanism where the consumption goods are delivered from sellers to buyers through
intermediaries.

There is a unit measure of ex-ante identical intermediaries (dealers), each of whom
purchases consumption goods from sellers in the wholesale market and sells goods to
buyers in the retail market. An intermediary can sell only if his current inventory is
positive. The flow cost of holding x units of inventory is c(x) for x = 0,1,2,.... The cost
function ¢ : N — R is increasing with ¢(0) = 0, and the marginal cost ¢(x + 1) — ¢(x)
weakly increases in x. All agents are risk-neutral and share a common discount rate p > 0.

Let g+ : IN — [0, 1] be the probability mass function of the distribution of inventory
holding across intermediaries at time ¢. Specifically, g:(x) represents the measure of in-
termediaries who holds x units of inventory at time ¢t. Therefore, g¢(x) > 0,Vt, x and
Y ren &¢(x) = 1, Vt. For notation convenience, we use g; to denote the vector {g:(x) }ren
for each ¢.

Markets. The retail market is organized in multiple submarkets indexed by the retail
price p € R. In each retail submarket p, the ratio of buyers to intermediaries is denoted
by 0(p). Retail submarket p can therefore be viewed as a group of agents who wish to
trade at price p. Similarly, the wholesale market is organized in multiple submarkets
indexed by the wholesale price w € R. In each wholesale submarket w, the ratio of sellers
to intermediaries is denoted by A(w). Following Pissarides (1985), we refer to 6(p) and
A(w) as the tightness of the corresponding retail and wholesale submarkets.

Search and Matching. Search is directed in the sense of Moen (1997) and Acemoglu and
Shimer (1999). At each moment, an intermediary can choose to enter at most one retail
submarket and one wholesale submarket simultaneously. In this way, we capture the
intermediary’s retail/wholesale pricing problem as a choice of the corresponding sub-
markets.

At each instant, a buyer sees all the retail submarkets (prices) and chooses to enter
at most one retail submarket to search for intermediaries. If he does not enter any retail
submarket, he receives a flow outside option x; > 0. That is, a buyer’s opportunity cost
of searching in any retail submarket for time length dt > 0 is x,dt. The outside option
can be interpreted in many ways. For example, one possibility is that the buyer searches
in a decentralized market without intermediation (via, e.g., Craigslist) to look for a seller,
where he meets a seller at a rate which is normalized to be 1 and receives an expected
surplus x; from a meeting with a seller. Similarly, a seller sees all wholesale submarkets
(prices) and chooses to enter at most one wholesale submarket at each moment. If the



seller does not enter any wholesale submarket, he receives a flow outside option x5 > 0.
For example, in a used-car setting, the seller’s outside options also include his flow utility
from keeping the used car. See section 2.2 for more discussion.

There are frictions in submarkets. In each submarket, the matching process is deter-
mined by a matching function. Following the literature (see, e.g., Pissarides (1985) and
Moen (1997)), we assume that the matching function is homogeneous of degree one so
that the matching process in each submarket is fully determined by its tightness. Specif-
ically, at each instant, an intermediary meets a buyer at Poisson rate ¢,(0(p)) in retail
submarket p. We further assume that the function ¢, : R — R4 is bounded, twice-
differentiable, strictly increasing, and strictly concave, such that ¢,(0) = 0. On the other
side of a retail submarket, a buyer makes a contact with an intermediary at Poisson rate
P:(6(p)) where the function ¢, : Ry — Ry is twice-differentiable and strictly decreas-
ing. Due to the homogeneity of the matching function, we have ¢,(0) = ¢,(0)/6,V6 > 0,
which reflects the fact that the number of intermediaries who meet buyers must equal
the number of buyers who meet intermediaries. Finally, the matching function satisfies
limg o () = 0, and limy_,g ¢,(6) = +oo. Similarly, in a wholesale submarket w, an
intermediary meets a seller at Poisson rate ¢, (A(w)) where ¢, : Ry — Ry is bounded,
twice-differentiable, strictly increasing, and strictly concave, such that ¢, (0) = 0. On the
other side, a seller meets an intermediary at Poisson rate (A (w)) where ¢, : Ry —
R is twice-differentiable and strictly decreasing such that ¢y, (A) = ¢(A)/A, VA > 0,
lim) e P(A) = 0, and lim) o P (A) = +o0.

When an intermediary and a buyer meet in retail submarket p, the buyer buys one
unit of the good from the intermediary at price p. When an intermediary and a seller
meet in wholesale submarket w, the seller sells one unit of the good to the intermediary
at price w.

2.2 Discussion of Assumptions

Before moving forward, we discuss some assumptions. First, we assume that search
is directed, such that an agent is fully aware of the price and the matching probability of
each submarket. The model both captures search friction and also preserves the familiar
trade-off between transaction speed and price in a competitive environment. Specifically,
we model an intermediary’ pricing decision as choosing which submarket to enter. To sell
faster, the intermediary has to enter a retail submarket with higher tightness, implying

"The assumption that an agent can visit at most one submarket at each time can be relaxed. Alternatively,
one can allow a buyer or seller to visit n submarkets by foregoing a flow outside option nx; wherei = b,s,
and n > 0is an integer that can be either exogenously specified or endogenously chosen 4 la Stigler (1961).
In this case, the rate at which the buyer or seller meets an intermediary is proportional to n as well.



a lower equilibrium retail price. Similarly, to buy faster, the intermediary has to enter
a wholesale submarket with higher tightness, implying a higher equilibrium wholesale
price. The assumption of observable prices is consistent with the idea that buyers shop
online to discover prices. A buyer’s choice of submarket reflects the idea that a buyer
understands that transaction speeds vary with the listed price.®

As noted by Acemoglu and Shimer (1999) and Faig and Jerez (2005), the directed
search paradigm encompasses many reasonable possibilities. One possibility is that sub-
markets are located in different places (malls, streets, or online platforms) and that in each
submarket the good is required to be traded at an identical term. Agents are aware of the
trading term in each submarket and understand that better terms of trade are associated
with greater degree of congestion within a submarket. Another one is to think of a sub-
market as a set of trading opportunities with identical trading term and agents randomly
select one of them as in the frictional assignment literature (Peters, 1991, 2000; Burdett
et al., 2001).

Second, we assume sufficiently large pools of potential buyers and sellers, so the entry
of buyers and sellers has infinite elasticity. This assumption is for simplicity. A straight-
forward implication of this assumption is that buyers and sellers will break even and act
myopically in equilibrium, and so the outside option parameters x; and s capture the
expected flow payoff of buyers and sellers respectively. We view this modeling choice
as a simple way to close our partial equilibrium model which focuses on the dynamics
of intermediaries instead of buyers and sellers.” In the quantitative exercise, these out-
side option parameters are shown to be identified with limited data, and they serve as a
natural baseline to gauge intermediaries” welfare contribution.

Third, we assume that an intermediary can order at most one unit at each moment.
This assumption can be relaxed. In subsection 4.1, we extend our baseline model and
allow a seller to carry multiple units, and the outcome of intermediaries” equilibrium
policies resembles the familiar (s, S)-rule and non-linear pricing. Also, we assume a ho-
mogeneous product and ex-ante homogeneous intermediaries. The first assumption is
made to emphasize the search frictions resulting from the uncertainty about how quickly
agents are matched. This is a deliberate simplification to highlight our main mechanism.

8That being said, observing perfect price information is not essential for the negative relationship be-
tween price and trading speed. One can obtain a similar trade-off in a random search model by introducing
random utility (demand curve) and production cost (supply curve) and analyze steady-state equilibria
where the equilibrium inventory distribution is constant over time. However, the directed search formal-
ization, as discussed in Menzio and Shi (2011), is necessary to make agents’ decisions independent of the
distribution of inventory holdings. It makes our model suitable for considering the transaction dynamics
of a permanent shock or the implication of aggregate uncertainty.

9 A similar modeling choice is used in canonical labor search model where firms’ intertemporal job post-
ing trade-off is trivialized and the focus is on the workers’ job search dynamics. See Pissarides (2000) for a
textbook treatment.



In the search theory literature, another important source of search frictions comes from
the uncertainty regarding the match quality between agents and products, which can also
be accommodated by a stylized extension of our model (see subsection 4.2). The extension
on vertical product differentiation is also discussed (see subsection 4.3). We assume that
intermediaries are ex-ante homogeneous to highlight the contribution of the ex-post in-
ventory dynamics to price dynamics and endogenous cross-sectional heterogeneity. This
assumption leads to a common optimal inventory-based pricing policy among interme-
diaries. It is straightforward to extend our model to allow for ex-ante heterogeneous
inventory-price relationship (see subsection 4.4).

Finally, we fix the measure of intermediaries but endogenize buyers” and seller’s par-
ticipation decisions. This assumption reflects our belief that the participation decisions
of intermediaries are significantly less flexible than those of buyers and sellers in many
intermediated decentralized markets (e.g., real estate, used car, and financial asset mar-
kets) due to non-trivial entry/exit cost. It certainly limits the applicability of our model
to understanding long-run industry dynamics and firms’ turnover in these markets.

2.3 Individual Problem and Equilibrium

This subsection formulates the competitive search equilibrium. In our model, inter-
mediaries are ex post heterogeneous in their inventory holdings. Therefore, as in other
continuous-time heterogeneous-agent models with a continuum of atomistic agents (see,
e.g., Shi (2009); Nufio and Moll (2018); Achdou et al. (2022)), a competitive equilibrium
can be characterized by two coupled differential equations: a Hamilton-Jacobi-Bellman
(HJB) equation for the optimal choices of each atomistic individual who takes the evo-
lution of the inventory distribution as given, and a Kolmogorov Forward (KF) equation
describing the law of motion of the inventory distribution induced by agents’ optimal
choices.

The Seller’s Problem. Let S; denote a seller’s life-time expected surplus gaining from
the intermediary sector. At each instant ¢, he decides whether and where to search. By
the standard argument, S; obeys the following HJB equation

pS; = Sp + max{ — ks + Igulgg)({¢w(At(w))(w —Si)}, O}. (1)

There are two terms on the right-hand side of the HJB. The first term is the value func-
tion’s partial derivative with respect to the calendar time, absorbing the effect of aggre-
gate state g;. The second term captures the payoff corresponding to the seller’s choice.
If he chooses to enter wholesale submarket w, he foregoes a flow outside option x5 and

9



meets an intermediary at a rate ¢, (A¢+(w) ) and sells his product, receiving a payoff change
from S; to w. The time index of A;(w) allows for potentially time-dependent mapping be-
tween wholesale price w and submarket tightness. If he decides not to enter any whole-
sale submarket, he neither meets any intermediary nor foregoes the flow outside option,
receiving a flow surplus 0. Obviously, it is strictly suboptimal to give up the outside op-
tion ks > 0 to search in a wholesale market with w < 0, so it is without loss to focus on
wholesale submarkets such that w > 0.

The standard free-entry argument implies that in equilibrium, at any time ¢, there is
no room for extra gains, so a seller never derives positive surplus from the intermediary
sector, i.e.,

S;=5=0, Vt.

As a result, the tightness A¢(w) in any wholesale submarket market w must satisfy the
following free-entry (FE) condition

ks > P (Ar(w))w, 2)

and A¢(w) > 0 with complementary slackness at each instant ¢. The left-hand side of con-
dition (2) is the seller’s outside option «s; the right-hand side corresponds to the expected
revenue of entry, which is given by the product between the rate at which the seller meets
an intermediary 1, (A¢(w)) and the selling price of the good w. If the tightness is positive
in any submarket w, then the equality must hold in (2); otherwise either more sellers have
the incentive to enter the wholesale submarket or some sellers who are supposed to enter
the wholesale submarket have the incentive not to do so. Therefore, for each wholesale
price w > 0, there exists a unique submarket tightness that is strictly positive and satisfies

the FE condition, given as
_ —1(Ks
Mw) =43 (), ®)
which describes a one-to-one mapping between wholesale price and submarket tightness
that is independent of time ¢ and the aggregate g;.

The Buyer’s Problem. Similarly, let B; denote a buyer’s surplus gaining from the inter-
mediary section. At each instant, the buyer decides whether to enter a retail submarket
and which one to enter. The buyer’s B; satisfies an HJB equation, given as

pB; = By + max{ —«p + max {,(0:(p))(u—p —Bs)}, O}. 4)
pelOu)

The first term on the right-hand side of the HJB is the time derivative of the buyer’s
value function, reflecting the effect of change in the aggregate state g;. The second term

10



captures the impact of the buyer’s choice. If he chooses to enter retail submarket p, he
forgoes a flow outside option x;, and meets an intermediary at a rate ¢,(6;(p)) and buys
at price p, receiving a payoff gain u — p — B;. The time index in 6;(p) allows for generic
time-dependent mapping between retail price p and submarket tightness. If he decides
not to enter any retail submarket, he neither foregoes the outside option nor meet any
intermediary. Obviously, it is suboptimal to search in a retail market with p > u, so it is
without loss to focus on retail submarkets such that p € [0, u).

As in the seller’s problem, the usual free-entry argument implies that B; = B =0in
equilibrium, Vt, and the tightness in each retail submarket must satisfy the following FE
condition

Ky > Pr(6:(p)) (u = p), ()

and 6;(p) > 0 with complementary slackness. Condition (5) guarantees that the tightness
6:(p) is consistent with the buyer’s incentive to search. The opportunity cost of search is
given by x;, and the benefit of search is given by the product between the rate at which
the buyer meets an intermediary ¢,(6;(p)) and the surplus from buying the good at price
p. The stationary one-to-one mapping between the retail market price and the market
tightness is described by

o) = v (25) ©)

such that for each retail price p € [0,u), there is a unique submarket tightness that is
strictly positive and satisfies the FE condition, and it is independent of time ¢ and the

aggregate g;.

The Intermediary’s (Pricing) Problem. Consider an intermediary with inventory x at
time t. It decides whether and where (at what wholesale price) to make new orders and
whether and where (at what retail price) to sell its inventory. If the intermediary has at
least one unit of inventory x > 1 at t, its expected value V;(x) obeys the following HJB
equation

pVi(x) = Vi(x) —c(x) + max {0, max gu(A(w))[~w + Vilx +1) =~ Vi(x)]}

N

wholesarerproblem

+ max {0, max gr(6(p))[p+ Vilx=1) = Vi0]}. )

N J/

retail problem

At each moment, an atomistic intermediary with positive inventory chooses a retail sub-
market and a wholesale submarket to enter, associated with a pair of retail and wholesale

11



prices, treating the functional forms of the corresponding market tightnesses A(-), 6(-)
defined in equations (3) and (6) as given. There are four terms on the right-hand side of
equation (7). The first term is the value function’s partial derivative with respect to the
calendar time, absorbing the effect of aggregate state g; on the intermediary’s problem.
The second term is the flow cost of holding x units of inventories. The third and fourth
items concern whether and which wholesale and retail submarkets to enter, respectively.
Choosing not to enter any submarket yields zero value flow. In the third term, the ex-
pected value flow of entering wholesale submarket w is the rate at which the intermediary
meets a seller ¢, (A(w)) in the submarket times the change in continuation value when
the intermediary buys one unit of good from the seller, —w + V;(x + 1) — V4(x). Analo-
gously, in the last term, the expected value flow of entering retail submarket p is the rate
at which the intermediary meets a buyer ¢,(6(p)) in the submarket times the change in
continuation value when the buyer purchases one unit of good from the intermediary,
P+ Vilx—1) — Vi(x).

In words, at each moment ¢ and the inventory level x > 1, an intermediary takes as
given the price-tightness mapping in each submarket and the evolution of the aggregate
state ¢; and controls the Poisson arrival rates of buyers (¢,(6(p))) and sellers (¢ (A(w)))
by choosing retail and wholesale prices.

An intermediary cannot sell when stocking out, so the HJB equation at x = 0 does not
include the choice of a retail submarket,

pVi(0) = max Vi(0) + ¢ (A(w)) [~ + Vi(1) — Vi(0)]. (8)

Denote the optimal control as p¢(x), w;(x) for each t.

Evolution of the Aggregate State. Given {0(-), A(-), p¢(), wt(-) }ter, , the distribution of
inventory across intermediaries g; evolves according to the following KF equation:

§1(x) = g(x = Do (Mwi(x —1))) +g:(x + 1) (0(ps(x +1)))

[N J/

inflows
— 8t(X) [ (0(pi(x))) + Ppu(Mwi(x)))], )
outﬁ;ws
for every x € N, and
Y gi(x) =1, vt (10)
xeN

The left-hand side of equation (9) is the time derivative of the measure of intermediaries
who hold x units of inventory at time t. The right-hand side of equation (9) has three
parts. The first two terms are positive, but the last term is negative. First, g;(x — 1) of
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intermediaries hold x — 1 units of inventory each and search in a wholesale submarket
with tightness A(w¢(x — 1)) at time f, and ¢, (A(w:(x —1))) of them find sellers, trade,
and increase their stock to x. Second, g:(x + 1) of intermediaries hold x + 1 units of
inventory each and search in a retail submarket with tightness 6(p;(x + 1)) at time ¢, and
¢r(0(pe(x+1))) of them find buyers, trade, and decrease their stock to x. Finally, g;(x) of
intermediaries hold x units of inventory at time ¢ and ¢,(0(p:(x))) of them meet buyers
and ¢y (A(wi(x))) of them meet sellers, changing their inventory from x to x — 1 and
x + 1, respectively.

Equilibrium. A competitive search equilibrium is a value function Vi(x), a pair of con-
trols (p¢(x), we(x)), a pair of market tightness function (6(p), A(w)) and a probability mass
function g;(x) for each calendar time f such that

1. 6(p) and A(w) satisfy the free-entry (FE) conditions (3) and (6) forany p € [0,u), w €

R"""/

2. given {6(p), A(w)}, Vi(x) is the solution of the intermediary’s Hamilton-Jacobi-
Bellman (HJB) equations (7) and (8), and the associated optimal controls are p;(x), w;(x)
for any t and x € IN, and

3. given {6(p), A(w), p+(x), wt(x)}, g+(x) is a solution of the Kolmogorov Forward (KF)
equations (9) and (10).

The system of equations (3), (6), (7), (8), (9), and (10) fully characterize the evolution
dynamics of our economy given an initial inventory distribution gp, which is degenerate
when all intermediaries are ex ante identical. In general, two systems need to be pinned
down simultaneously: the KF equations are determined by individual optimal policy, and
the evolution of the inventory distribution affects individual’s optimal choice through the
calendar time. We are particularly interested in the competitive search equilibrium with
the so called block recursive structure where each intermediary’s problem is distribution-
free (see, e.g., Shi, 2009; Menzio and Shi, 2010, 2011), i.e.,

pe(x) = p(x), wi(x) =w(x), Vi(x)=V(x), Vtx. (11)

Solving a block recursive equilibrium is both analytically and computationally conve-
nient. As is standard in competitive search models, it is without loss of generality to focus
on block recursive equilibria in our setting. We will argue that (i) all competitive search
equilibria are block recursive, and (ii) there is a unique block recursive equilibrium.
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3 Analysis

In this section, we provide equilibrium analysis of the model. First, we characterize the
equilibrium and introduce our main proposition which establishes that prices decrease
with inventory. Next, we analyze the steady state and transition dynamics and show the
existence of a unique stationary distribution of inventory holdings.

3.1 Equilibrium Characterization

An intermediary faces a trade-off between the expected speed of trade and the transaction
price. Specifically, equation (6) implies that each buyer’s expected benefit of search must
be constant in every retail submarket in an equilibrium. Hence, 6(p) must decrease in p.
That is, if a retail submarket features a higher price, its equilibrium buyer-to-intermediary
ratio must be lower, making it more likely for each consumer to meet an intermediary. If
an intermediary wants to sell faster (larger ¢,(6(p))), he must enter a retail submarket
featuring a lower price p. The same reasoning applies to the trade-off between transac-
tion speed and price in wholesale submarkets. The one-to-one equilibrium relationship
between price and market tightness implies that one can reformulate each atomistic in-
termediary’s (pricing) problem as choosing the tightness of the submarket he plans to
enter.

Specifically, the intermediary’s equilibrium choice of retail policy p:(x) necessarily
solves

max ¢,(0(p))[p + Vi(x — 1) — Vi(x)], (12)
pe(Ou)

where 0(p) is given by (6) and V;(x) solves the HJB equation (7). It is mathematically
equivalent to a text-book monopoly pricing problem where the cost is V;(x) — Vi(x — 1)
and the demand function is ¢ o 6(-). One can equivalently write the problem in (12) as

max ¢ (6)[p(6) + Vi(x — 1) = Vi(x)],

where the tightness feasible set is

® = (0,4, " (xp/u)] = {0} UO([0,u)]),

which is the union between 0 and the image of function 6(-), and for any 6 > 0, p(6) is
the inverse of 6(-) in (6), i.e.,

P B
p(e) =u Ebr(@) =1u (Pr(e), (13)
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where 1, (-) is decreasing. Condition (13) thus immediately implies that p(-) is decreasing.
It can be viewed as the inverse “demand curve” an intermediary faces. We extend the
feasible set of ® to include 6 = 0 to capture the idea that the intermediary is free not to
search in any retail submarket. We assume p(0) is an arbitrary constant so that choosing
f = 0 leads to a zero value of the retail problem.

Similarly, the intermediary’s wholesale problem in equation (7) can be equivalently
written as

r?eaigbw()t)[—w()\) + Vi(x +1) = Vi(x)],

where A = IR} is the feasible set for wholesale submarket tightness, and for any A > 0,
w(-) is the inverse of A(+) in equation (3), given as

Ks KA

T Pu(A) gu(d)

which is increasing in A and has the flavor of the inverse “supply curve” faced by an

w(A) (14)

intermediary. The feasible set includes A = 0 to allow the intermediary not to search
in any wholesale submarket. Assume w(0) to be an arbitrary constant so that choosing
A = 0 leads to a zero value of the wholesale problem.

Plugging equations (13) and (14) into the intermediary’s retail and wholesale problems
in equation (7) implies that the intermediary’s equilibrium value function V;(x) solves the
following HJB equation,

oVi(x) = Vi(x) —c(x) + Igneg@(f?)[u + Vi(x —1) = Vi(x)] — 0
retail marI(ret surplus

+ I){lea[{@w(?\)[‘/zf(x +1) = Vi(x)] — 1.
wholesale m:rket surplus

(15)

In equilibrium, it is as if the intermediary solves a decision problem based on the inven-
tory level at each moment, such that the intermediary chooses the tightness of the retail
submarket where he looks for buyers and the tightness of the wholesale submarket where
he looks for sellers.

The optimal retail market tightness, denoted by 6/ (x), maximizes the expected flow
surplus generated by the intermediary and a mass of buyers with measure 6/ (x). To be
specific, maintaining the market tightness to be 6 incurs a social opportunity cost 6,
but the intermediary and a buyer will meet at a rate ¢,(0) and generate gains from trade
u+ Vi(x —1) — Vi(x). Similarly, the optimal wholesale market tightness, denoted by
A} (x), maximizes the expected surplus generated by the intermediary and a mass of sell-
ers with measure A} (x). Given that all buyers and sellers break even in equilibrium, the
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value function V;(x) thus corresponds to the discounted expected social surplus that an
intermediary with inventory x at t generates from time ¢ on. The optimal controls 6; (x)
and A (x) for the HJB equation (15) correspond to the equilibrium market tightnesses in
retail submarket p(60; (x)) and wholesale submarket w(A;(x)), respectively. Therefore,
solving a competitive search equilibrium is equivalent to solving the decision problem
(15) and to plug the optimal controls into the conditions (13) and (14).

Now we argue that the solution V;(-) to HJB equation (15) is stationary. In princi-
ple, the solution to problem in equation (15) is allowed to be non-stationary (V; # 0) to
capture the impact of the evolution of the inventory distribution g;, but a closer look at
the problem in equation (15) reveals that the calendar time plays a role in the dynamic
control problem only through the control variables {6;(x), A+(x)}. Specifically, in (15), an
intermediary maximizes the expected life-time total utility that he delivers to buyers, net
of the expected life-time inventory cost, and {6;(x), A+(x)} solely pins down the stochas-
tic process of the intermediary’s life-time inventory {x;} and hence the process of flow
payoff. Towards a contradiction, suppose that V;(x) < Vy/(x) for some x and t # , the
intermediary at time ¢ has a profitable deviation by mimicking its time-t' self’s continu-
ation play. As a consequence, the calendar time ¢ (and thus the distribution g;) cannot
affect the intermediary’s optimal continuation payoff, i.e., Vi(x) = V(x), Vi(x) = 0,Vt, x,
and equation (15) can be rewritten as the following stationary HJB,

pV(x) = —c(x) + max¢(0)[u+V(x—1) = V(x)] - 0

+ max P M) [V(x+1) — V(x)] — xsA. (16)
Naturally, the optimal controls 6*(x), A*(x) must be stationary. By conditions (13) and
(14), the equilibrium retail and wholesale prices must be stationary as well, i.e., p;(x) =
p(0*(x)), w*(x) = w(A*(x)). Insum, all agents’ problems in equilibrium are independent
of the aggregate state gy, and so all competitive equilbiria are BRE.

The existence and uniqueness of BRE boils down to the existence and uniqueness of
the solution to the stationary HJB function (16), which can be verified by the standard
argument (see, e.g., Chapter 4 of Guo and Hernandez-Lerma (2009)). The optimal value
function V(x) must be unique. Therefore, given V(x), it is straightforward to see from
(15) that the intermediary’s optimal retail policy 6(x) and optimal wholesale policy A(x)
can be characterized separately as two optimization problems and are unique due to the

strict concavity of the matching function.!’

19The lack of multiplicity is due to the free-entry specification in both retail and wholesale markets, mak-
ing the equilibrium allocation socially efficient, as in many competitive search models, e.g. Moen (1997)
and Menzio and Shi (2011).
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From the problem in (16), it follows that the optimal 0*(x) must satisfy the first-order
condition (FOC) given as

K = ¢ (07(x))[u+V(x—1) = V(x)], (17)

and 6*(x) > 0 with complementary slackness. The FOC in (17) says that the marginal op-
portunity cost k; to the economy to maintain the tightness to be 6*(x) > 0 must equal the
social marginal benefit of doing so in any retail submarket with positive tightness. Here,
the social opportunity cost is incurred by buyers and the social benefit is the expected
surplus of a transaction. Similarly, the optimal A*(x) must satisfy

K5 > (A" () [V(x +1) = V(x)], (18)

and A*(x) > 0 with complementary slackness. It says that the marginal social oppor-
tunity cost ks incurred by sellers equals the social marginal benefit of maintaining the
tightness to be A*(x) > 0.

Notice that conditions (17) and (18) imply that 6(x) and A(x) depend on gains from
trade, u + V(x — 1) — V(x) and V(x + 1) — V(x), respectively, which depends on the in-
termediary’s current inventory size x. The following lemma characterizes how inventory
size affects gains from trade for an intermediary in both retail and wholesale markets.

Lemma 1. In the equilibrium, whenever V(x) increases in x, the difference V(x) — V(x — 1)
decreases in x; if V(x) starts to decrease at some x = S € IN, V(x) decreases over all x > S.

Lemma 1 says that any positive marginal benefit of accumulating inventory decreases
in the level of inventory whenever it exists.!! Intuitively, this property is due to the combi-
nation of two factors. The first one is the diminishing risk of stocking out. With two-sided
search frictions, an intermediary faces uncertainty about both the demand in retail mar-
kets and the supply in wholesale markets. If his inventory is reduced to zero, he can nei-
ther immediately order goods from sellers nor trade with buyers. As the intermediary’s
inventory size increases, the stockout risk in the near future falls, lowering the marginal
benefit of increasing inventory. The second one is the increasing inventory cost function.
As x increases, the marginal inventory cost erodes the benefit of reduced stockout risk,
also contributing to the diminishing return of adding inventory. Moreover, with a weakly
convex inventory cost function, the benefit of adding more inventory V(x) — V(x — 1)
becomes negative at sufficiently large x. Therefore, the maximum of V(x) exists, and we

"This property of diminishing returns to inventory is quite robust. It was first found in the multi-unit
search paper of Carrasco and Smith (2017). Their paper is different in that it is a single-agent search model.
The model is extended by Carrasco and Harrison (2022) by introducing operational cost. A similar property
has been obtained in Chen et al. (2020) where search frictions are absent.
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define
S = min{arg max, .V (x)} (19)

as the minimal inventory level at which an intermediary’s value achieves the maximum.'?

Then, by Lemma 1, the benefit of adding more inventory, V(x) — V(x — 1) will be negative
for any x > S as well, resulting in an equilibrium upper bound for the intermediary’s
inventory level.

Now we are ready to derive the relationship between inventory and prices. Let

p*(x) = p(6°(x)) and w*(x) = w(A*(x))

denote the equilibrium retail and wholesale pricing policy where p(-) and w(-) are speci-
fied in conditions (13) and (14).

Proposition 1. In the equilibrium, the intermediary’s choice of submarkets is such that

1. 6*(x) increases in x, and retail price p*(x) decreases in x, and

2. A*(x) and the wholesale price w*(x) decrease in x.

Proposition 1 says that at a higher inventory level, the intermediary will enter a retail
submarket with lower price and higher matching probability (easier to sell), and enter a
wholesale submarket with lower wholesale price and lower matching probability (harder
to buy). This is intuitive. An intermediary trades off between the risk of stockout and the
cost of inventory and new orders. When the inventory stock becomes higher, the risk of
stockout decreases, but the inventory cost becomes higher, so it is optimal to lower future
inventory by selling more and buying less. To do so, the intermediary needs to lower both
the retail and wholesale prices. Similarly, when his stock becomes too low, the concern of
stockout grows, and the intermediary raises both the retail price and the wholesale price
to slow down the sales and speed up new orders, increasing his future inventory holding
in expectation.

The empirical implication of Proposition 1 is that when the intermediary’s inventory
increases, (i) the retail price decreases and the sales increase on average, and (ii) the
wholesale price decreases and new orders decrease on average.

Corollary 1. An intermediary’s equilibrium retail and wholesale prices co-move over time.

Corollary 1 is an immediate implication of Proposition 1. Driven by the change in
inventory, an intermediary’s retail price and wholesale price should move in the same

12The set arg max,cy V(z) is a singleton at a generic point in the parameter space and may contain up to
two adjacent elements, in which case we select the smallest element. This selection is the only robust choice
to the perturbation of an arbitrarily small marginal cost of production and delivery.
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direction. Depending on the elasticity of the matching functions in retail and wholesale
markets and the search and entry cost, the retail price and the wholesale price may re-
spond to the inventory change differently. When the wholesale price is more sensitive
to the change of inventory, the equilibrium exhibits incomplete pass-through (Nakamura
and Zerom 2010). Also, because of the co-movement, the markup, which is the difference
between the retail price and the wholesale price, can be either positively or negatively
correlated with the inventory, depending on the matching function elasticity in the retail
and wholesale markets.

Recall that Lemma 1 implies that V' (x) increases if and only if x < S, where S is defined
in equation (19), so A*(x) = 0 for any x > S. However, even if x < S, the marginal benefit
of increasing inventory may be sufficiently small so that

ks > ¢ (M) [V(x+1) = V(x)],

for any A, making it impossible to generate gains from trade in the wholesale market. In
this case, it is still optimal to set A = 0. We denote by

s = max{x € N: A*(x) > 0}, (20)

in the equilibrium, which is referred as the base level of stock in the literature. Notice that
s < S,and A*(x) > 0 for any x < s. Therefore, the equilibrium resembles the classic base
stock policy in the inventory management literature (see, e.g., Porteus 2002).

Corollary 2. In the equilibrium, the intermediary employs a base stock policy, i.e., A*(x) > 0 if
and only if x <'s.

3.2 Steady-State Distribution and Transition Dynamics

Now we study the steady-state distribution of inventory holding and retail price. In
equilibrium, the optimal controls 6*(x), A*(x) govern the law of motion of the inventory
distribution across intermediaries. With any given initial distribution gg at t = 0, the
following KF equation fully describes the equilibrium dynamics as

§(x) = &(x =1)¢pu(A"(x —1)) + g1(x + 1) (0" (x +1))

(N

inflows

— &(®)[¢r(67(x)) + P (A"(x))], (21)

~

outflows

for every x € N and any time ¢, with } 37 ( ¢;(x) = 1.
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Steady-State Distribution. At steady state, ¢;(x) = 0 for every x, and so the distribution

of inventory holding across intermediaries is constant over time.

Proposition 2. There exists a unique steady-state distribution gss of inventory holdings across
intermediaries, such that lim;_,eo gt = gss, With gss(x) > 0if 0 < x < s+ 1and gss(x) =0
otherwise. The distribution is unimodal and satisfies

gss gss H ¢ *l )), Vx > 1,
i=1 r 9 ))

where

s+1 x ¢w()t*(i _ 1))
2s5(0) = (1 + ;g or (07 (1)) )

Proposition 2 says that the unique stationary inventory distribution has positive prob-
ability masses over finite (s + 2) inventory levels, and the probability mass function g,
has a single peak, because the retail rate ¢ (6*(x)) increases in inventory level x, whereas
the wholesale rate ¢,,(1*(x)) decreases.'® The intuition behind is very simple. By Propo-
sition 1, in equilibrium, an intermediary’s expected increment of inventory is decreasing
in his current inventory. Therefore, there exists a cutoff inventory level denoted by x* such
that the intermediary’s expected increment is negative if and only if his current inventory
stock is above x*. As a result, the equilibrium inventory dynamics behaves as if a “mean”
regression process: Whenever an intermediary’s inventory deviates from x*, he adjusts
the retail or wholesale policy 6 and A to push the future stock back to x*. The more the
stock deviates from the mean level, the faster the speed of the regression is. In the steady
state, the mass of intermediaries at the cutoff level of inventory x* is the highest, and the
mass monotonically decreases as the stock becomes farther and farther away from x*. As
a consequence, x* is the unique mode of the steady-state distribution.

Because the intermediary retail price is monotone in his inventory size (Proposition
1), it is immediate that the equilibrium inventory dynamics shapes the steady-state dis-
tribution of retail price.

Corollary 3. There exists a unique steady-state distribution of retail prices across intermediaries,
and it is unimodal.

That is, our model predicts that the distribution of retail price in the steady state is
single-peaked. Because the inventory is most likely to be around x*, one should expect

I3Following Hartigan and Hartigan (1985), we say a probability distribution is unimodal (or single-
peaked) if there is a mode x* such that the cumulative density or mass function of the probability dis-
tribution is convex for x < x* and concave for x > x*.
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that the intermediary’s retail price is equal to or close to p*(x*) most of the time. Ex-
tremely high or low prices will be observed rarely. Notice that our model has no ex-ante
heterogeneity among buyers, among sellers, or among intermediaries. The retail price
dispersion is generated even if no agent randomizes, which distinguishes our model from
most search models that rely on agents” heterogeneity and mixed-strategy to generate
price dispersion.

We want to point out that at the steady state, an individual intermediary’s price still
changes over time due to inventory changes. Therefore, the equilibrium price exhibits
intra-distribution dynamics. That is, the rank of an intermediary’s price varies over time
within the price distribution. This is because we assume that intermediaries are identical,
so the model only generates a temporal price dispersion rather than a “spatial” or persis-
tent price dispersion across intermediaries. This is consistent with a number of empirical
studies such as Lach (2002) and Chandra and Tappata (2011). In the literature, such a
phenomenon is often used to support the mixed-strategy pricing equilibrium suggested
by consumer search models. Our result suggests that, to test whether firms play mixed
strategies (at least in industries where inventory costs and stockout risks are non-trivial),
one may also need to take into account their inventory dynamics.

Transition Dynamics. Many economic and policy relevant questions involve the transi-
tion dynamics, that is, the endogenous evolution of the economy from some initial inven-
tory distribution. We close this section by briefly discussing the transition dynamics.

In our model, thanks to the block recursive structure, the individual equilibrium pol-
icy is independent of the inventory distribution. It is therefore sufficient to keep tracking
the solution to the differential equations (9) given 6*(x), A*(x) and some initial distribu-
tion of inventory go(x). This tractability makes it easy to use our model to study many
interesting questions such as the role of frictional supply chain in the transmission of
unexpected demand and supply shock. Specifically, suppose that the seller’s entry cost
ks permanently increases at time 0 when the economy’s old steady state distribution is
go(x). After the supply shock, all individuals immediately adjust their policies and the
equilibrium market tightnesses change accordingly to 6*(x), A*(x). However, it will take
time for the economy to converge to the new steady state due to frictions. We illustrate it
further in Section 5 after calibrating the model.

4 Extensions

In this section, we enrich our baseline model by introducing multi-unit wholesale
package, product differentiation, and intermediary heterogeneity. These extensions make
our model applicable to many markets and demonstrate that the model can address some
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questions that are usually studied in static or decision frameworks.

4.1 Multi-Unit Wholesales and the Optimality of (s, S)-Rule

In many industries, it is reasonable to assume that an intermediary can purchase mul-
tiple units when he meets a seller. Our framework can easily incorporate this feature, and
some classic inventory management properties such as (s, S)-rule and non-linear whole-
sale pricing naturally emerge in equilibrium.

Suppose that a wholesale submarket is indexed by a bundle (w,y) € R4 x IN where
y is the supply quantity of the bundle and w is the total price of the bundle. To focus
on the impact of search frictions, we ignore the production cost by assuming the seller’s
fixed and marginal production cost to be zero, so the FE condition (2) still holds. An inter-
mediary therefore decides not only the wholesale purchase price but also the wholesale
purchase quantities y by choosing a wholesale submarket. Using a similar procedure, we
conclude that the intermediary acts as if to solve the following problem at any x > 1,

pV(x) = —c(x) + max¢()[u+V(x—1) = V(x)] - 0

T Po(M[V(x+y) = V(x)] — KA, (22)

and (8) at x = 0. The optimal 6*(x) still satisfies condition (17), but the optimal wholesale
policy y*(x), A*(x) satisfy the following necessary conditions

Ks > (A" () [V(x +y*(x)) — V(x)], (23)
y'(x) € arg rﬁ%{%(ﬁ(ﬂ)[‘/(x +y) = V(x)] —xsA™(x) }. (24)

The rest of the equilibrium analysis is straightforward. Using the same argument, one
can show the analogy of Lemma 1 and that 6*(x) increases and A*(x) decreases.

Given the optimal controls 0*(x), A*(x), y*(x), the corresponding optimal retail price
for the intermediary with x units of inventory can be still computed by plugging 6*(x)
into equation (13), and if he search for ordering new inventory, i.e., A*(x) > 0,y*(x) >
0, his optimal wholesale price of the y*(x)-unit bundle is given by plugging A*(x) into
equation (14).

The Optimality of (s, S)-Rule. One interesting implication of this extension is that the
classic (s, S)-rule (Scarf 1960) naturally emerges in our equilibrium search model. Under
this policy, an intermediary makes wholesale orders whenever the inventory level falls to
or below some s > 0 and replenishes to a target level S > s. An exogenous assumption
of a concave cost of ordering is often necessary to ensure the optimality of an (s, S)-rule.
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In our setting, however, such a concave structure naturally emerges as an equilibrium
outcome due to search frictions. The formal statement is as follows.

Proposition 3. The optimal wholesale policy A*(x),y*(x) is an (s, S)-rule. Specifically, define
S € N as the minimal inventory level at which an intermediary’s value achieves the maximum as
in (19). Then, ds € IN, s < S, such that

1. an intermediary with inventory x searches in the wholesale market if and only if its inventory
is at or lower than the replenishment point, i.e., A*(x),y*(x) > 0if and only if x < s, and

2. whenever x < s, the intermediary seeks to raise its inventory level to the order-up-to level
S, ie,y*(x) =8 —x,Vx <s.

The logic is as follows. Suppose that A*(x),y*(x) > 0 for some x < s, then by (24) the
intermediary’s optimal order quantity y*(x) must satisfy

y" (x) + x = argmax ¢, (A" (x)) [V (2) — V(x)] — A" (x).

With A*(x) being independent of the order quantity, it must be optimal to set y*(x) =
S — x. Therefore, if the intermediary decides to search in the wholesale market for re-
plenishment, it seeks to order to the level that maximizes the equilibrium continuation
value.

When x > S, the value function V(x) decreases, and there is no benefit to order more
inventory, so A*(x) = 0. When x < S, the gain from ordering up V(S) — V(x) is positive
and increases as the inventory level x goes down due to the concavity of the value func-
tion. When x is sufficiently low, it is optimal to set A*(x) > 0. We define s as in equation
(20). Notice that s = S — 1 if «; is sufficiently small. The idea is visualized in Figure 1.

Remark 1. When the marginal production cost is 6 > 0, the optimal ordering policy will satisfy
an adjusted (s,S)-rule. First, it is still optimal to set A*(x) > 0 only if x < s, but when
x < s, the optimal quantity of order will not be constant but satisfies y*(x) +x = S(x) =
arg max;eN V(z) — dz.

Equilibrium Non-Linear Pricing. Another interesting feature of the equilibrium is that
the equilibrium price-quantity relationship in the wholesale market is in general non-
linear. When x < s, the equilibrium price w(A*(x)) decreases in x, and the quantity-price
relationship is non-linear across bundles being traded in the wholesale market, that is,
the ”“unit wholesale price” w(A*(x))/y*(x) is not constant across x € {0,1,...,s}. Specif-
ically, for any x < s, the intermediary aims to place a wholesale order of y*(x) = S — x
units, and the equilibrium cost of the bundle is w(A*(x)) = &/, (A*(x)) according to
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Figure 1: lllustration of the optimality of the (s, S)-rule.
The horizontal axis represents the choice of A, and the vertical axis represents the value of corresponding
benefit and cost of each A.

(14). Consequently, the unit price becomes w(A*(x))/y*(x) = xs/[(S — x) X Pu(A*(x))],
a nontrivial function of x rather than a constant.

Remark 2. The non-linear pricing result should be expected given the optimality of the (s,S)-rule.
In the literature, to sustain the (s,S)-rule as an equilibrium choice, it is often assumed that the
intermediary faces a non-linear price-quantity relationship. In contrast, the price non-linearity
endogenously emerges in our equilibrium search model.

Steady-State Distribution. Now we study the cross-sectional distributions of inventory
holdings and retail prices. Using the equilibrium policies 6*(x), A*(x), y*(x) and starting
from any initial distribution go, the law of motion of the inventory distribution across
intermediaries can be written as the following KF equations:

g(x) = § B¥ss 8t(x)¢w(A7(x")) +81(S + 1)¢r (67(S +1)) — 8:(S)r(67(5))  ifx =5,
gi(x + 1) (0% (x + 1)) — e(x)[¢r(6° (x)) + P (A () ifx £,
(25)
and Y37 gt(x) = 1,Vt. The left-hand side of equation (25) is the time derivative of the
measure of intermediaries who hold x units of inventory at time t. The right-hand side of
equation (25) depends on the value of x. When x = §, the inflow g¢(x")¢,(A*(x')) is the
mass of intermediaries who are holding x’ < s units of inventory and successfully find
sellers, trade, and increase their inventory up to S. Such inflows occur at x = S only due
to the optimal (s, S)-rule. Another inflow g;(S + 1)¢,(0*(S + 1)) accounts for any mass
of intermediaries holding S 4 1 units of inventory and successfully find buyers, trade,
and lower their inventory to S. The outflow g:(S)¢,(6%(S)) is similarly the mass of inter-
mediaries who are holding S units of inventory and successfully find buyers, trade, and
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lower their inventory to S — 1. When x # S, there is no inflow due to inventory replenish-
ment in the wholesale market, but there may be an additional outflow of intermediaries
2t(x)pw(A*(x)). Specifically, A*(x) > 0if x < s, and this additional outflow is positive
because these low inventory intermediaries may successfully order up to S; otherwise,
intermediaries with sufficient inventory do not place wholesale order, and A*(x) = 0.

At steady state, ¢;(x) = 0 for every x and ¢, and the distribution of inventory holdings
across intermediaries is stationary over time, denoted as gi:. The following proposition
characterizes it.

Proposition 4. Suppose that intermediaries can make multi-unit wholesale orders. There ex-
ists a unique stationary distribution gl of inventory holdings across intermediaries, such that
limy oo gt = M, with gl (x) > 0if0 < x < S, and gl (x) = 0 otherwise. The distribution
satisfies

oy Or(07(0) + u(A4(2))

¢r(6%(0)) =0, and

where ¢ (A*(1)) = 0ifi > s+1,

(i+1)) -
gss (1+Zn¢r 9* (P (A*(Z)))

x=0i=x

The distribution’s mode is between x = Qand x = s + 1.

Proposition 4 says that the unique stationary inventory distribution has positive prob-
ability mass over finite (S 4 1) inventory levels. One may conjecture that there is a mode
at x = S because all intermediaries with x < s aim to bring their inventory up to level
S. However, this is only half of the story. An intermediary with S units of inventory
will sell at a sufficiently low retail price, and so the transition probability from x = S to
x = S — 1 will be sufficiently large, bringing up the mass of intermediaries holding S — 1
units of inventory in the steady state. A similar argument applies to intermediaries with
S —2,5 — 3, ... units of inventory. Moreover, for any s < x < S, the steady-state condition
¢+ = 0 implies that

(x4 1) (6" (x +1)) = g(x)r (6 (x))-

Since both 6*(-) and ¢,(-) are increasing, we must have g7 (x + 1) < ¢(x) for x > s, and
so the mode is between x = 0 and x = s + 1.

As in the benchmark model, the intermediary retail price is monotone in his inventory
size, so the steady-state distribution of retail price can be easily characterized by the retail
policy p(0*(s)) and the inventory steady-state distribution, which is omitted.
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4.2 Horizontal Product Differentiation

In the literature of industrial organization, a popular way to capture (horizontal) prod-
uct differentiation and consumer taste heterogeneity is to introduce idiosyncratic utility
into the model: a buyer’s payoff by consuming a product is a random variable i (see,
e.g., Anderson et al. (1992) for a textbook treatment). In this section, we introduce ran-
dom utility into our framework and demonstrate how the presence of horizontal product
differentiation may alter the equilibrium characterization of the benchmark model.

Suppose the buyer-product match-specific utility is independently and identically dis-
tributed across buyers and products. When a buyer and an intermediary meet, the buyer
will pick his favorite product that delivers positive payoff. For simplicity, assume that the
match between a buyer and a product is randomly good or bad. A good match occurs
with probability « € (0,1], such that the buyer receives utility u by consuming the prod-
uct; the match is bad with complementary probability, and consumption delivers zero
utility to the buyer. The match between a buyer and an intermediary with inventory x is
good if the buyer finds at least one good match with the x products, with probability

Ox)=1-(1—a),

which is strictly increasing and concave in x. Therefore, holding a large number of inven-
tory endows the intermediary another advantage: reducing the possibility of mismatch.
In this case, a retail submarket is indexed by (p, x), the price and the inventory size of the
intermediaries who trade in this market. In equilibrium, a match between a buyer and
an intermediary will lead to a transaction if and only if the match is good and generates
strictly positive gain from trade. Therefore, the intermediary’s problem (16) becomes

pV(x) = —c(x) + max ¢ (0)P(x)[u+ V(x —1) — V(x)] —x,0

+ maxgo(M[V(x+1) = V(x)] = x:A. (26)

The equilibrium FOC that the optimal A*(x) must satisfy is unchanged, whereas the op-
timal 6% (x) must satisfy

Ky > ¢ (07 (x))@(x)[u+ V(x—1) = V(x)]. (27)

Because ®(x) is strictly increasing and concave in x, one can verify that the optimal 6*(x)
is still increasing in x. This is because the expected gain from trade between a matched
intermediary-buyer pair, ®(x)[u + V(x — 1) — V(x)], increases in x. In words, when x
is higher, each match between a buyer and the intermediary will more likely lead to a
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transaction, so it is socially optimal to let more buyers search. In fact, the extra term ®(x)
gives the intermediary a stronger incentive to hold a large amount of inventory, which
is to increase the probability of a good match. Decreasing a will naturally intensify this
scale effect and the intermediaries” incentive to become big, which shifts the steady-state
distribution of inventory toward the right.

In the benchmark model, the equilibrium relationship between an intermediary’s in-
ventory and the optimal choice of retail price is monotone. With product differentiation,
this monotonicity is no longer guaranteed.

The tightness of each retail submarket must satisfy

Ky 2 pr(0(p)) @ (x)(u — p), (28)
and 6(p) > 0 with complementary slackness, so the equilibrium price in each retail sub-
market with a positive tightness is given by

@m0 )

In the equilibrium, ¢, (6*(x)) is decreasing in x while ®(x) is increasing in x, so the retail

price may no longer be monotone in the inventory x. The intuition is as follows. When his
inventory increases, the intermediary wants to sell faster, so he enters a retail submarket
with higher 6. From the perspective of buyers, it is less likely to meet an intermediary in
a submarket with higher 6, but conditional on meeting an intermediary, it is more likely
to find a desired product due to the intermediary’s larger inventory size. Therefore, the
effective matching probability ¢, (0)®(x) and the buyer’s willingness to pay may not be
monotone in x in the equilibrium. We summarize the above discussion as follows.

Proposition 5. In equilibrium, an intermediary’s optimal retail price is given by expression (29),
which may be non-monotone in x.

The non-monotone relationship between retail price and inventory implies that even
though the steady-state distribution of inventory gs; is still unimodal, the distribution of
retail prices may not be.!*

4.3 Vertical Product Differentiation

This section discusses how to introduce vertical product differentiation into our frame-
work. Suppose that there are | quality types, each of which delivers utility u; to the buyer,
such that u; ;1 > u;, V1 < j < J. We assume symmetric information, so different types of

4Numerical examples of non-single peaked steady-state price distribution are available upon request.
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products are traded in different submarkets. Then the retail and wholesale submarkets
can be indexed by the price and the type of product being traded. In equilibrium, the
free-entry condition still holds for any submarket with positive market tightness.

It is natural to allow intermediaries to hold multiple types of product, i.e., an inter-
mediary’s inventory is a vector x = (x1,...,x;) € IN/ where x;j denote the inventory of
type-j product. Following exact the same argument presented in the baseline model, the
intermediary acts as if to decide its retail and wholesale policy for each type of product
0/(x), M (x). The corresponding HJB becomes

J .
oV(x) = —c(x) + ) { max ¢, (0)[u; + V(x; — 1,x_j) — V(x)] - xbef}

= loicol
] .
+ 2 { max ¢y (M) WVxj+1Lx) = V(x)] - Ks)\]}, (30)
]:1 MeA

where the cost function is ¢ : N/ — R, increasing in each argument, and X_j repre-
sents the vector (x1, .., Xj 1, Xj11, X 7). By similar argument, we can show that the cor-
responding equilibrium retail and wholesale prices are given by u; — x,/4,(6/(x)) and
Kks/Pw(M (x)) respectively. Unfortunately, this multi-dimensional dynamic optimization
problem is analytically intractable in general. The following proposition characterizes the
equilibrium policy when the cost function is additive.

Proposition 6. Suppose that the cost function is additive, i.e.,
I .
x) =) d(x), (31)
j=1

where ¢/ : N — Ry is the inventory cost for product type j. Then the optimal policy is such that
0/ (x) and A (x) depend on x through x; only, and the value function satisfies

/A
= Z VI(x;), (32)
j=1

where V/ (xj) corresponds to the type-j product problem such that

ij(xj) = —cj(x]-) +  max q’)r(()])[u] + Vf( -1)— Vj(xj)] — K;,Gf
0ic@i
+ max (M) [VI(xj+1) — VI(x))] — s/ (33)
NeA

Proposition 6 says that when the cost function is additive, a multi-product intermedi-
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ary acts as multiple single-product intermediaries. The proof is to use the standard veri-
tication argument. By plugging equations (31) and (32) into equation (30), one can verify
that the HJB equation is balanced. A simple parametric example of the inventory cost
being additive is to specify the inventory costasa linear function of x; i.e., c(x) =} cl X;
where the marginal inventory cost ¢/ > 0,V]. If ¢/ is constant across j, the inventory cost
depends only on the total inventory Z]I:1 x;. In this case, the KF equation and the steady-
state distribution of inventory can be characterized separately for each product as in the
baseline model, which is omitted.

4.4 Heterogeneous Intermediaries

Intermediaries may be heterogeneous in their inventory costs and matching technolo-
gies. For example, some intermediaries have outstanding marketing and sales managers,
bringing them high visibility to buyers; some have effective purchasing departments and
maintain good relationship with manufacturers, allowing them to be part of an efficient
supply chain; some have superior transportation or handling teams or low opportunity
cost of the money, admitting low marginal inventory cost. These heterogeneities can lead
to variations in expected inventory sizes, sales and profitability, and, therefore, different
inventory-price relationships among intermediaries.

It is straightforward to extend our model to accommodate intermediary heterogene-
ity. Specifically, there are | types of intermediaries, and the proportion of each type j
is denoted by f;. Denote (), 47£( -), and ¢7w( -) as respective functions for type-j inter-
mediaries” inventory cost, retail matching rate, and wholesale matching rate. A retail
submarket is indexed by (p, j); a wholesale submarket is indexed by (w, j). Accordingly,
the market tightnesses are 6/(p) and M/(w). Using an almost identical argument, we can
show that, in the unique block recursive equilibrium, each type-j intermediary’s value
solves the type-specific dynamic optimization problem

pVI(x) =~ (x) + maxg}(0)[u+V/(x —1) —VI(x)] - x40

+ max ¢l (M) [Vi(x +1) — VI(x)] — KA. (34)
A>N

Given the optimal control 6/(x), AJ(x), the corresponding retail and wholesale prices for
type-j intermediary can be computed using conditions (13) and (14) as in the benchmark
model. That is, a type-j intermediary’s optimal retail and wholesale prices are given by

i _ . &) i _ KM (x) . PIIN .
p(0/(x)) =u @) and w(M (x)) GIEL respectively. The within-type inventory
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distribution evolves according to a type-specific KF equation, given as

g = gilx =Dl M(x—l )+ 81 (x+1)gh(# (x +1)
— SO (x) + 9l (V ()], (35)
for every x € IN and at each moment ¢, with )37 gﬁ = 1,Vt,j. The steady-state dis-

tribution for type-j intermediary’s inventory, denoted by gés ) can be computed accord-
ingly, and it has a smgle peak by the same argument. The overall steady-state distribution
of inventory is gss(x) ] 1 Ji gés , Vx. The cross-sectional retail price distribution fol-

lows, which necessarily depends on each gés and the type distribution f;.

5 Application to Used-Car Markets

In this section, we apply the model to study used-car dealers” inventory management
and dynamic pricing by using detailed information on used-car listings (inventories) by
a large number of car dealers. The empirical exercise serves multiple purposes. First, the
empirical exercise serves as a test case for our model. We show (1) how to identify key
parameters with limited information, and (2) our model of search frictions and inventory
predicts transition dynamics. Second, our focus on the used-car market is policy rele-
vant. We quantify some important unobservable characteristics of market participants
and the contribution of frictional intermediaries managing inventories to welfare and an-
alyze how changing primitives in this market leads to different outcomes — which is par-
ticularly important given recent market disruptions in this industry. There is a growing
literature studying the economics of car dealers, and we are the first to focus on the role
of inventories (see, e.g., Gavazza et al. (2014), Biglaiser et al. (2020), Larsen (2021), and
Gillingham et al. (2022)).

5.1 On Used-Car Markets

While the practice of inventory management plays out in many real-world settings,
several factors make the used-car market suitable for our study. First, the market is highly
decentralized, making the search and matching frictions non-trivial. As a result, many
transactions are intermediated. Nationally, about two-thirds of used-car sales are made
by dealers. Second, inventory management is important for used-car dealers. In general,
dealers must manage both value erosion as assets age and holding costs, which include
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floor-plan inventory investment and cost of capital.'®

Third, cars are durable goods. Most
buyers and sellers do not make frequent transactions, so it is uncommon for dealers to
manage inventory acquisition with long-term contracts.'® Fourth, stocking decisions can
be made frequently. Dealers face substantial uncertainty and typically acquire used cars
from individuals or at wholesale auctions. Dealers may have access to multiple auctions a
week at multiple auction locations. Fifth, dealers frequently adjust prices. These features
suggest that the interaction between inventory control and search friction is important in
the used-car market, making our theory applicable.!”

Before moving forward, we would like to further elaborate the applicability (and lim-
itation) of our model to the used-car market. First, our model does not consider inter-
mediaries’ entry/exit. Our data includes dealers’ listing and pricing in one year. In
this relatively short-term period, we do not anticipate significant structural change in
the market. Second, our directed search model assumes all prices are observable. In the
used-car application, this information assumption is materialized by the aggregator such
as cars.com: we implicitly assume that all agents check and compare prices online before
visiting dealers. Third, as we discussed in the model section, a submarket corresponds a
set of agents whose target purchase/selling price is consistent with the submarket price.
See more discussion in section 2.2. In Appendix B, we provide some preliminary evidence
supporting the hypothesis of directed search models.

5.2 Data

We obtain information on used-car listings from a large car listings platform, cars.
com. We observe the daily listings for dealers who list inventory on the platform in the
state of Ohio in 2017. For each car, we know the Vehicle Information Number (VIN),
which is a unique number assigned to a vehicle that contains information to describe and
identify the vehicle, make, model, model year, and trim with a particular set of options,
exterior color, odometer mileage, whether it is certified by the OEM, and the daily listing
price from the date when it is initially listed to the date when it is removed from the
website.

15An inventory management expert Jasen Rice of LotPop said “For a dealer having 50 units
or fewer on the lot, one or two inventory management mistakes can crush their month.” See
https:/ /www.cbtnews.com/ dealers-experts-discuss-inventory-holding-cost-erosion/ for details.

160n the contrary, new car dealers sign long-term contracts, e.g., dealership agreement, with manufac-
tures and essentially act as their representatives.

70ur general understanding of the industry is from various industry reports, including Edmunds’
“Used Vehicle Market Report,” Manheim’s “Used-Car Market Report,” and Murry and Schnei-
der (2015). For industry reports, see https://dealers.edmunds.com/static/assets/articles/
2017_Feb_Used_Market_Report.pdf and https://publish.manheim.com/content/dam/consulting/
2017-Manheim-Used-Car-Market-Report.pdf
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Notably, the platform’s pricing is not marginal to the number of cars listed, and the
platform reports that dealers typically list their entire inventory on the platform. More-
over, according to our conversations with cars. com, most car dealers update their listings
on the platform immediately. Therefore, we are confident that a dealer’s new listings, list-
ing removals, and active listings at a point of time are the actual new orders, car removals,
and inventory in the dealership at that time, respectively. Although our data do not allow
us to identify where a newly added car is obtained from and where a removed car goes
to, a dealer’s new orders and car removals at a point of time are good measures of the
inflows and outflows of that dealer’s inventory, which is our primary focus.'®

We focus on four to six years gasoline sedans of non-luxury brands and treat them as
the same product.'” This group of cars accounts for 12.4% of all listings on cars.com dut-
ing the sample period. We choose this group of cars for our analysis for the following two
reasons. First, the majority of all transactions of this group of cars are sold by dealers (see
Figure 1 of Biglaiser et al. (2020)). Second, this group of cars are relatively homogeneous
compared to older cars and luxury cars. We count each dealer’s inventory as the number
of these cars. We implicitly assume that dealers make stocking and pricing decisions for
this product segment independently of decisions for other segments. This assumption is
reasonable if the dealer’s inventory cost is additive according to Proposition 6. We also
acknowledge dealers’ heterogeneous retail and wholesale behavior pattern due to their
size difference. We consider two groups of dealers according to their average inventories.
Small dealers are those whose average inventory during the sample year is fewer than 10
cars, while large dealers are those whose average inventory is between 10 and 20 cars.?’

After selecting car types, we end up with 16,239 used cars listed by 259 small dealers
and 15,551 listed by 133 large dealers over the course of a year. Table 1 reports the sample
statistics of dealer-week-level inventory and inventory change and car-level prices sepa-
rately for small dealers (Panel A) and large dealers (Panel B). On average, small dealers
hold 7 units of non-luxury 4-6-year-old sedans and large dealers hold 13 vehicles in this
product segment. Moreover, the list price of smaller dealers is higher than that of large
dealers.

18 A newly added car can come from a wholesale trade-in or dealer-to-dealer auction market, or just be
allocated from another site if the dealer is a chain store. Similarly, a removed car can be sold to an individual
or another dealer or reallocated to another site if the dealer is a chain store.

19The brands we consider include Chevrolet, Chrysler, Dodge, Ford, GMC, Honda, Hyundai, Jeep, Kia,
Mazda, Mercury, Mitsubishi, Nissan, Pontiac, Saturn, Subaru, Suzuki, Toyota, and Volkswagen.

20We drop 29 very large dealers whose average inventory of this particular type of car ranges from 20 to
54, including the five CarMax stores in Ohio. It is tempting to include them in our quantitative analysis,
but unfortunately, there are too few observations and these dealers substantially differ from each other in
sizes and inventory patterns. For example, their inventory of the 4-6 year old sedan segment ranges from
zero to 88. So we drop them from our analysis.
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Table 1: Descriptive Statistics

Panel A. Small Dealers?
Mean SD Min P25 P50 P75 Max

Inventory (dealer-week) 7.158  3.377 0 5 7 9 26
Inventory change (dealer-week) -0.038 1482 -18 -1 0 1 11
List price ($, car listing) 11,513 5399 5900 8,835 10,288 12,988 34,898
Weeks on market (car listing) 7441 7.082 1 2 5 10 35

Panel B. Large Dealers'
Mean SD  Min P25 P50 P75 Max

Inventory (dealer-week) 13.218 5.611 0 10 12 16 52
Inventory change (dealer-week) -0.127 2339  -16 -1 0 1 12
List price ($, car listing) 11,339 4,229 5,494 8,920 10,500 12,990 27,990
Weeks on market (car listing) 6.627 6.284 1 2 5 9 30

Notes. Data source: Cars.com. Sample selection is described in text.
* The sample of small dealers includes 13,209 dealer-week observations and 16,239 car listings.
¥ The sample of large dealers includes 6,783 dealer-week observations and 15,551 car listings.

5.3 Parametric Specification

As demonstrated in Section 4, our benchmark model can be enriched in many ways,
so we tailor the model to our empirical application. The model that we take to the data
is the model described in Section 4.4, which extends the baseline model to heterogeneous
intermediaries. We allow for two types of dealers that differ in their inventory costs and
matching functions. In our data, there is a lot of variation in dealer size, and given this
there is good reason to believe that dealers have different primitives in their objetive func-
tions.

There are other potential features of used car markets that we do not capture in the
model that we take to the data. We focus on a single vehicle segment, 4-6 year-old non-
luxury sedans. For this reason, we don’t further model vertical differentiation. Because of
our choice of vehicle segment, we also ignore issues related to asymmetric information.
Although used cars are the canonical example of a lemons market, there is more recent
research that suggests asymmetric information problems are not severe, particularly for
late model vehicles — see Adams et al. (2011) and Biglaiser et al. (2020). Used-car dealers
have a variety of channel to acquire inventories including trade-in of new buyers, partic-
ipating auctions, etc. A dealer with low inventory may be able to order multiple units
at once. Unfortunately, we do not observe the source of dealers” inventory addition. If a
dealer adds multiple inventory within a week, the data does not allow us to distinguish
whether they are purchase in one order or multiple ones. For simplicity, we keep the
single-unit order assumption as in the benchmark model. This brings the risk of the seller
side outside option and surplus being misspecified. Lastly, although there is likely unob-
served horizontal product taste across consumers, but we can not separately identify cars

33



that are rejected by buyers due to a bad match from the matching function itself because
we don’t observe failed dealer visits. We ignore the role of unobserved product tastes,
out extension in Section 4.2.

We assume that search frictions on both the retail and the wholesale markets are sum-
marized by type-specific scaled urn-ball matching functions given as

where y]r', y{u > 0 are scaling parameters to capture search frictions for each type j = 1,2,
and they ensure that the matching rates are bounded. Bounded matching rates further
ensures that we can transform the continuous-time Markov decision process described by
the HJB equation (16) into an equivalent discrete-time problem using an uniformization
technique (see, e.g., Guo and Hernandez-Lerma, 2009, Chapter 6). As Poisson matching
rates rather than probabilities, gb{ and (,b{v can be greater than 1 if y£ or yéu is above 1.2!
Our matching-function choice is motivated by Peters (2000) and Burdett et al. (2001), who
provide the micro foundation of an urn-ball matching function as a limit result of a finite
directed search game as the number of traders goes to infinity.

We assume linear inventory costs with type-specific marginal cost parameters ¢/ > 0,
for j = 1,2, such that

c(x) = cx.

Notice that the linear cost specification satisfies the additive condition (31). By Proposi-
tion 6, it is without loss to treat a multi-product intermediary as multiple single-product

intermediaries.

5.4 Parameter Identification

Our model is in continuous time. Accordingly, we treat the data as a finite sample of
periodic observations of a continuous-time data-generating process. More specifically, a
continuous-time process has a realized path x(t) with t € [0, T], and our sample consists
of observations {x(0),x(A),...,x(nA)} C x([0,T]), where A > 0 is the time interval
between two observations. We normalize A = 1 to be a week to match the data frequency.

The discount rate p is predetermined and matches a 5% annual rate, such that

1-— 6_52p = 5%.

2IRecall that the probability of a type-j intermediary meeting a buyer (or seller) within a small time period
of length dt > 0 is roughly gbidt (or ¢£,dt).
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The remaining parameters to be calibrated are a buyer’s utility u, matching function pa-
rameters (py, im), the buyer and seller’s respective outside options «; and «;, and the
marginal inventory cost ¢/ for each type j = 1,2. In the used-car setting, a buyer’s outside
options include keeping their current car, buying a new car, buying an old car from other
sources such as friends or relatives, etc, or using other transportation options. The seller’s
outside options include selling the car by himself or keeping it.

To understand the challenge of model identification, notice that although the theoret-
ical model considers a two-sided market with three types of agents: buyers, sellers, and
intermediaries (dealers), who interact in retail and wholesale markets, the data we use
only contains information of dealers” inventory and list retail prices. Specifically, we do
not observe wholesale prices. We show in the following discussion how to utilize analyt-
ical implications of the model to identify the relevant parameters step by step. Identifica-
tion is sequential, such that in each step, we show how to express a subset of unknown
parameters as a closed-form function of moments of the data and parameters that are al-
ready shown to be identified from a previous step. Identification does not rely on, and is
not complicated by, the two types of dealers, so we drop the dealer type indexing in the
discussion.

Step 1: Matching rates. First, we show that the transition probability matrix of inven-
tory levels identifies the unobserved Poisson rates of matching in both markets at each
inventory level ¢;(x) = ¢.(6%(x)), ¢l (x) = ¢puw(A*(x)), fully determining the pattern
of dealers” inventory transition. Our approach resembles the standard approach in the
labor search literature (see, e.g., Menzio and Shi (2011) and Guo (2018) where the state
variable is workers” employment status). However, unlike the employment status that
switches infrequently, an intermediary’s state is the inventory level, which may increase
or decrease quickly.

In equilibrium, each intermediary’s inventory level follows a continuous-time Markov
chain over s + 2 states {0,1,...,s + 1}, where s is given in equation (20). The process is
induced by intermediaries optimal controls 6* (x) and A*(x) in Proposition 1, such that the
transition rates are captured by the matching rates ¢; (x) and ¢, (x). An (s +2) x (s + 2)
square matrix Q = [Qy,] summarizes these transition rates, where each entry Q,, is given

as
¢ (x) ify=x—-1>0,
o _ | @ e @] ity =x
g ¢ (x) ify=x+1<s+1,
0, otherwise.

\

Each column of Q contains at most three non-zero entries, reflecting the inflow and out-
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flow rates in equation (21) at the corresponding inventory level.?> Therefore, using Q,
the transition dynamics for the cross-sectional inventory distribution in Kolmogorov For-
ward (KF) equation (21) can be written as §; = ¢:Q, where ¢t = (g¢(x))x—0,.s+1 IS @
1 x (s + 2) vector for the inventory distribution at ¢, and ¢;(x) is another 1 x (s + 2) vec-
tor for the law of motion. The stationary inventory distribution gss thus satisfies 0 = gsQ.

If Q is observable, the matching rates are readily available. However, Q as a matrix
for Poisson transition rates does not have an immediate data counterpart. What can be
computed from the data is the weekly inventory transition probability matrix, denoted by
another (s +2) x (s + 2) square matrix P = [Py,|. Each entry of the matrix is

Py =Pr(Xep1=y | Xe=x), Yxrye{01,.,s+1},

which is the probability that inventory level X; changes from x to y in a week. See the
two top panels of Figure 2 for a visualized illustration of each dealer type’s inventory
transition matrix.

We transform the transition rate matrix Q into a weekly inventory transition proba-
bility matrix P. For such a continuous-time Markov process, i.e., a general birth-death
process over finite states, it is a known result that there is a one-to-one mapping between
Q and an associated transition probability matrix P(t) over time t > 0, such that each
xy-entry represents Py, (t) = Pr(X¢y1t = v | X¢ = x) forany x,y € {0,1,...,s + 1} and
any time T > 0. See, for example, Chapter 6 of Pinsky and Karlin (2010). The matrix P(t)
satisfies

ootk
t _E: k

where Q¥ = I is the identity matrix at k = 0, and QF is the k-th power of the square
matrix Q. The weekly transition probability matrix is simply P = P(1) = ¢? given our
normalization. Notice that although a dealer is allowed to sell or buy at most one car at
each instant, it may sell or buy multiple cars over a week.

The empirical counterpart of P thus disciplines the matching rates {¢; (x), 5 (x) f;lo
with ¢;(0) = 0 and ¢},(s + 1) = 0. Note that the empirical counterpart of the stationary
distribution gss contains less information than that of P, as gss = gssP. The remaining
identification argument treats these matching rates as observable. We rely on the assumed

functional forms and the equilibrium conditions to recover the parameters.

Step 2: Retail-market parameters. Second, we show that the retail prices p*(x) and the
intermediaries’ retail-market matching rates ¢; (x), determined from the previous step,
can identify the retail-side parameters u, x;, and y, via the buyers’ free-entry condition

22Gee Chapter 6 of Pinsky and Karlin (2010) for an introduction of continuous-time Markov chain.
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rewritten as equation (13).

Given ¢;(x) and the urn-ball matching function, the retail submarket tightness and
the buyer-side matching rate become nonlinear functions of y,, respectively denoted as
6% (x; py) and ¢; (x; py ), satisfying

* lur * (P;f(X)
0" (x; 1) =In ———, x;u,) = — 1
) = gy ) )
Then, the free-entry condition (13) can be written as
Kp
X)=u————.
PO = )

It follows that, when we observe retail prices p(x) at more than three inventory levels
with sufficient variations, parameters u, «;, and i, are jointly determined.

Step 3: Wholesale-market Parameters. Third, we turn to the wholesale side and show
that the intermediaries” FOCs (17) and (18) identify the wholesale-side parameters x; and
Hw-

Given ¢; (x), parameter y, and the urn-ball matching function, the first-order deriva-
tive ¢.(6(x)) in equation (17) becomes p, — ¢; (x). Then, given u, k;, and y, in the previ-
ous step, equation (17) pins down V(x) — V(x — 1) as

Kp

V(x)—V(x—l):u—m.

Similarly, given the wholesale-side matching rate ¢ (x) and the urn-ball matching func-
tion, the first-order derivative ¢/,(A(x)) in equation (18) becomes iy, — ¢2:,(x), which is a
function of y,. Then equation (18) becomes

Ks

Vix)-V(x—1) = o — P (x—1)’

which pins down ¥, and ji, jointly.

Step 4: Marginal inventory cost. Lastly, the stationary HJB equation (16) identifies the
marginal inventory cost c. Specifically, we take the first-order difference on both sides of
equation (16), which results in an expression with c on the right-hand side being the only
unknown element.
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5.5 Parameter Values

We calibrate the parameter values using the simulated method of moments. Guided
by the identification arguments, for each type j = 1,2, we choose the weekly inventory
transition matrix P/, the cross-sectional inventory distribution g/, and the logarithms of
the average retail prices by inventory level In p/ as the targets. We select the parameters
(u, K, K, ( pt]r', y{u, ¢/)j—1,2) such that they solve

. i io2
11]‘111;‘1 . 2 Z Hmmodel - mdataHZ’
u,Kb/KSl(]’ll’IHZUIC'I)jzl,Z j:1/2 m=P/8r1n(P)

where || - ||> represents the L? norm.

Table 2 reports the parameter values. Figure 2 shows goodness of fit by comparing the
transition probability matrices and the inventory distributions. The fit is reasonable, al-
though the model produces slightly lower inventory levels. Interpretations of parameter

values are as follows.

Table 2: Calibrated Parameter Values

Parameter Value Description
4 9.86 x 107*  Weekly interest rate to match a 5% annual rate
u 17,614 Unit utility ($)
Kp 5,880 A buyer’s flow outside option to search
Ks 23,927 A seller’s flow outside option to search
Small Large
y.]; 1.31 1.71 Retail-market matching function parameter
pt]w 3.73 855  Wholesale-market matching function parameter
d 14.78  4.55 A dealer’s marginal cost of inventory ($) per week

We begin with parameters common to both small and large dealers. The value of u
captures the average monetary-measured utility of purchasing a 4-6-year-old non-luxury
sedan. As the outside options to search, values of buyers’ k; and sellers’ x; are flow rates
per unit of time. Examples of such outside options include buyers and sellers search-
ing for direct trades, and sellers keeping the cars; see our discussion of assumptions in
the model section. The values of these two parameters are indeed reasonable given our
free-entry specification. To make sense of the numbers, recall that if there are buyers in
a submarket p, we have the free-entry condition ¢,(0*(p))(u — p) = x. Our data fre-
quency is weekly, so ¢,(0*(p))/7 is a linear approximation of the daily probability of a
buyer meeting a dealer, and IE, [¢, (0" (p))(u — p)] /7 ~ $840 is the buyer’s daily expected
payoff. By the free-entry condition, it is also the daily opportunity cost he incurs. Observe
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in Table 3 that the average T}, is 1.09 (or 1.10) at small (or large) dealers, which means that
it takes a buyer a little over a week to buy a car on average. Since our data frequency
is also weekly, the value of x; is roughly equal to the buyer’s expected total payoff of
searching for buying a used car.

Similarly, for sellers in a wholesale submarket w, we have «; = 1P, (A*(w))w, where
w should be interpreted as the seller’s surplus from a trade (price minus his value of
owning the car which has been normalized to be zero). By the same logic, ¢, (A*(w))/7
approximates the daily probability of a seller meeting a dealer, and ¢, (A*(w))w/7 ~ 3418
is roughly a seller’s daily expected payoff by searching for selling his car. From Table 3,
we see that the average T; is 0.30 (or 0.13) weeks at small (or large) dealers, i.e., it takes
a seller about 1-2 days to make a sale, so the parameters implied average surplus of the
seller is roughly between $3, 000 and $7,000. We interpret the difference between large
and small dealers as the difference in acquisition sources, speed and convenience. For
example, cars are acquired through trade-ins and wholesale auctions, both of which vary
across dealers.

We turn to the type-specific parameter values. Qualitatively, their relative scales are
as expected. Specifically, small dealers face greater search frictions than large dealers in
both retail and wholesale markets, reflected by the scaling parameters in matching func-
tions u! < u? and ul, < p2; small dealers also have higher marginal cost of inventory
such that ¢! > ¢2. Furthermore, we have pti < V{m for j = 1,2, so it is generally easier
for both types of dealers to find sellers in wholesale markets than meeting retail buyers.
These parameter differences jointly capture the heterogeneity in inventory distributions.
The marginal inventory costs are roughly $15/week for a small dealers and $5/week
for large dealers. Dealers typically debt-finance their inventory, and our calibrated costs
correspond to weekly cost of funds on a $10,000 loan with 5% annual interest (which is
about $10/week). However, these inventory marginal costs are relatively low, which im-
plies that dynamic pricing and inventory management is more about search frictions and
uncertainty than literal holding costs. The inventory cost parameter absorbs remaining
dealer heterogeneity and other factors that affect dealers” flow revenue besides market
frictions, however these factors appear to be small.

5.6 Small versus Large Dealers

This section explores the difference between small and large dealers. From Table 2, we
learn small and large dealers differ in their inventory costs and search and matching tech-
nologies. This section takes a closer look at the difference between small and large dealers
and the corresponding welfare implications. We report selected equilibrium statistics in
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Figure 2: Goodness of fit: weekly transition probability matrix and inventory distribution
by dealer type

Inventory levels are trimmed at the 99th percentile. Panel (1) plots the weekly type-specific transition

matrices P/ = [PJ]Cy], where solid gray discs represent matrix entries in the data, colored circles represent
those implied by the model, and marker sizes correspond to entry values. In panel (2), solid gray bars are
empirical frequencies, colored empty bars represent model-implied steady state probability mass functions.
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Table 3: Summary of Equilibrium Outcome by Dealer Type

cross-sectional mean of... relative

x p(x) or(x)  6%(x) T(x) Tr(x)  Tw(x) Tp(x) Ts(x)  surplus
Small 6.35 11,226 ($) 0.69 0.76 0.74 1.44 1.55 1.09 0.30 129%
Large 10.65 11,170 ($) 1.30 1.42 0.39 0.77 0.82 1.10 0.13 185%

x is a dealer’s inventory level, x = 0,1,...,s; p(x) is the retail price posted by a dealer with inventory x,
¢r(x) is the corresponding retail matching rate, and 6*(x) is the associated tightness, for x > 1. T(x) =
1/[¢r(x) + ¢pw(x)] is a dealer’s expected time spent at inventory level x before it increases or decreases.
Tr(x) = 1/¢,(x) is a dealer’s expected time to sell a car when meeting buyers at rate ¢,(x), x > 1.
Tw(x) = 1/¢w(x) is a dealer’s expected time to gain a car when meeting sellers at rate ¢, (x), x <s— 1.
Ty(x) = 1/1,(x) is a buyer’s expected waiting time in retail submarket-x, x > 1. Ts(x) = 1/¢,(x) is a
seller’s expected waiting time in wholesale submarket-x, x < s — 1. Relative surplus is the ratio of the
aggregate social surplus created by the intermediaries over the aggregate option values.

Table 3.

First, we compute the average time that a large (small) dealer spent at inventory level
x. For each dealer type j = 1,2, the time spent at inventory level x before it jumps is
an exponential random variable with expectation T/(x) = 1/ [gb] (x) + qb] (x )] G1ven the
stationary distribution gés, the cross-sectional mean is simply T/ = S]“ gés ). Itis
clear that large dealers spend less time at each x, and their inventory levels Churn faster
than small dealers’. On average, small dealers see changes in inventory levels every 5
days (T! = 0.74), and large ones need 3 days (T? = 0.39).

We take a closer look and separately examine the retail side and the wholesale side. In
retail, suppose that a type-j dealer stays in submarket—x until meeting with a buyer, then
the expected waiting time is T] =1/ 4>£ 6*(x)), for j = 1,2. Similarly, in wholesale,
suppose that a type-j dealer stays in submarket—x until meeting with a seller, then the
expected waiting time is Tgu(x) =1/ gb{u()\*(x)), for j = 1,2. Not surprisingly, small
dealers need to wait longer than large ones on both sides. However, despite the relatively
small difference in y]r., large dealers sell almost twice as fast as small ones, thanks to the
more considerable difference in pt]z'u and large dealers’ low inventory costs.

Next, we shift our focus to buyers in retail markets and sellers in wholesale mar-
kets, respectively. Recall that our data does not contain information about buyers and
sellers. However, our model predicts buyers” and sellers” behavior patterns based on
information about intermediaries. The expected waiting time for a buyer in type-j deal-
ers’ retail submarket x is T]( ) = 1/1p£(9*( )), for x = 1,...,s+1; a seller’s analog is
TS]( ) =1/ 1/1{0(/\*( )), for x = 0,...,s. Given the inventory distribution g; at , we can
calculate the measure of buyers or sellers in each submarket, such that

gl (x) = g1(x)0% (%), &(x) =g (x)A*(x), Vx=0,1,...,s.
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Normalizing yields the probability distributions conditional on submarkets being active,
such that g (x)/ Z;J“lgt( Jforx=1,...,s+1and gj(x)/ Ly—o&i(y) forx=0,...,5. We
use these distributions at the steady state to calculate the cross-sectional means of Té(x)
and Tg (x) in Table 3. As mentioned in the previous section, on average, it takes buyers a
similar amount of time to search for either type of dealers, and sellers need less time to
search for a dealer, especially a large one.

5.7 Gains from Trade due to Dealers

We examine the fraction of gains from trade that is created by used-car dealers. We cal-
culate the relative surplus as follows. At each moment ¢, given an inventory distribution
gt, the gross value flow created by the dealer sector is

s+1

= L s lgr(®" () — ()] (36)

In words, this is the likelihood of a match multiplied by the buyer utility created minus
the holding costs for a given inventory level x, integrated over the inventory distribution.
The total outside-option value flow is

s+1 s+1
th xX)Kp + A (0)xs] = Y (87 (2)kp + 85 (%)xs], (37)
x=0

which captures the values to buyers and sellers is no trade occurs for different inventory
levels.

Consider the relative (gross) value at t as G;/C;. We compute them for both large and
small dealers at the steady state where ¢; = 0. The results are reported in Table 3. Large
dealers make significantly more welfare contribution than small dealers. From the Ta-
bles 2 and 3, we see that the large dealers advantage in improving social welfare mainly
comes from two factors. First, they have lower inventory cost. Second, they have supe-
rior search and matching technology, making them much more efficient at allocating cars
between sellers and buyers. Between these two factors, the crucial one is the difference
in search and matching technologies. To see this, we simply remove the inventory costs
by setting ¢! = ¢* = 0. Keeping other values unchanged, we re-simulate the model to
obtain the respective stationary equilibrium without any inventory costs. At the zero-cost
equilibrium, both small and large dealers” average inventory levels increase by more than
3 units. However, the change in the relative surplus created by either type of dealers is
insignificant. Specifically, the increase in small dealers” surplus creation is only 1 per-
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centage point, and the change is even less for large ones by about 0.4 percentage point.
Therefore, we conclude that large dealers’ greater contribution to welfare is due to their
search technology.

5.8 Transition Paths

Lastly, we examines market transitions after changes to model primitives. This is par-
ticularly relevant for the used car market since the market underwent sudden changes in
the wake of the COVID19 pandemic in 2021 and 2022. In 2021, used car inventories de-
creased substantially and prices rose.”> Journalists and industry professionals attributed
the changes in the used car market to many factors, including disruption that spilled
over from the supply chain issues in the new-car market and changes in underlying de-
mand and the behavior of used car shoppers. For the former, scarcity among new cars
likely disrupted supply into the used car market (as consumers held their cars longer) and
consumers who would typically be new-car customers were substituted to the used car
market due to insufficient selection and high prices for new cars. For the latter, internal
migration, generous fiscal and monetary policy, and work-from-home, prompted some
consumers to value cars differently.

We examine the implications of inventory management to changes in a market by
plotting the transition dynamics after a 10% increase in each of the models’ primitives.
Figure 3 and Figure 4 plot the resulting dynamics of three type-specific statistics: (a) av-
erage inventory level, (b) average retail price, and (c) relative surplus created. Observe
that, in each experiment, (a) evolves continuously, whereas the paths of (b) and (c) see
jumps at the time of shock t = 0. The reason is that, although the equilibrium policies
adjust instantaneously upon the shock, which causes the jumps in (b) and (c), the cross-
sectional inventory distribution evolves gradually according to the updated KF equation
(21) induced by the new equilibrium policies, resulting in a continuous path of (a).

We begin with the responses to changes in market frictions in Figure 3. The first ex-
periment considers the impact of increasing the buyer’s outside option «x; by 10%, which
is essentially a negative demand shift. Buyers search less, so fewer inventories are neces-
sary. As a result, dealers cut retail prices and wholesale order frequencies, gradually low-
ering their inventories. The relative surplus declines due to the direct effect of increasing
kp and the indirect effect as fewer transactions are made through the dealer sector. In the
second experiment, we increase the seller’s outside option x5 by 10% to capture a negative
supply shift. As a response, dealers will order at a lower speed. Interestingly, the impact
on the average inventory is starkly heterogeneous among dealers. To the large dealers, the

23See the CNBC report from the following link. https://www.cnbc.com /2020/10/15/used-car-boom-is-
one-of-hottest-coronavirus-markets-for-consumers.html

43



10

% change from initial steady state

Figure 3: Responses to permanent changes in search frictions: type-specific transition
paths of average inventory, average retail price, and relative surplus. At t = 0, matching

parameter ky, ks, 1}, or 11}, permanently increases by 10%.

In each panel, the thin blue line is for the small dealers (j = 1), and the thick red line the large ones (j = 2);
time ¢ is on the horizontal axis, and the vertical axis shows the percentage deviation from the baseline
steady state before any parameter change. Each row corresponds to a shocked parameter, and each column
contains the transition paths of an equilibrium statistic. Time of shock is t =
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impact can be ignored, and the average inventory eventually increases slightly, whereas
to the small dealers, it is non-trivial, which means the large dealers must proportionally
decrease both the buying and selling speed, keeping average inventory unchanged. This
is also reflected in the difference between small and large dealers” average prices. For
large dealers, the average retail price jumps less, meaning a smaller decline in the retail
transactions rate; the transmission of the change from the wholesale side to the retail mar-
kets affects the large dealers less, mainly due to their less frictional search and matching
technologies.

The next two experiments (third and fourth rows of Figure 3) examine the effect of a
respective 10% increase in dealers” matching-function parameters. We simultaneously in-
crease small dealers’ retail matching-function parameter y} and large dealers’ ;2. Match-
ing efficiencies in retail markets improve for both dealers, and meeting buyers becomes
easier. Dealers want to increase inventory holdings to avoid greater stockout risks and
charge higher retail prices; small dealers respond more in inventory levels and prices.
Retail transactions become more frequent despite the higher retail prices. Upon impact,
smaller dealers’ retail prices jump up more, partially offsetting the benefit of increased
retail trading rates, which explains the initial small dip in the relative surplus created by
small dealers. Dealers of both types are able to contribute more in welfare eventually.

A more striking result shows in the experiment of improving the wholesale matching
as a 10% increase in small and large dealers’ u,, 112, respectively. In response, large deal-
ers reduce the average inventory holdings, and small ones do the opposite. The asymme-
try occurs due to the interactions between frictions in retail and wholesale markets. For
small dealers, the dominating effect of reduced frictions in wholesale is that they can bet-
ter “insure” themselves against stockout risks by holding more inventories, which allows
them to set lower retail prices. For large dealers, wholesale-side frictions are low even
before the impact, and the dominating effect of smoother wholesale transactions is to re-
duce large dealers’ need to hold inventories to cut inventory costs. In either dealer type’s
case, improved matching in wholesale spills over to retail markets, such that dealers post
lower retail prices to increase retail rates. Consequently, both dealers create more surplus.

Now we move to the responses to changes in utility and inventory cost in Figure 4.
The parameter u captures the buyer’s life-time utility of owning a used car. In our model,
when the buyers’ utility of trading through the dealer sector increases, more buyers enter
retail markets and this increases dealers’ selling speed. To respond, dealers (i) increase
the retail price, and (ii) hold more inventory to slow down the rise of the stockout risk.

Finally, we consider a shock to the dealers’ inventory cost. If dealers” inventory cost
permanently increases, they will immediately adjust their retail and wholesale policy to
reduce their inventory levels. To boost the selling speed, the retail price immediately falls.
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Figure 4: Responses to a permanent increase in unit utility u or inventory cost ¢/: type-
specific transition paths of average inventory, average retail price, and relative surplus.

See Figure 3 for figure notes.

This is the direct effect of increasing inventory cost on the average retail price. An indi-
rect effect will take place in the long run: Dealers’ inventories gradually decreases over
time, and the retail prices increases due to the rise of the stockout risk accordingly. In
the long-run, the average retail price may be either higher or lower than the level prior
to the shock, depending on the competition between the two effects. In terms of welfare,
the dealer sector’s welfare contribution jumps up immediately following the inventory
shock. Although increasing inventory cost has a direct negative effect on the dealer sec-
tor’s welfare contribution, in the short-run, this effect is dominated by the positive effect
due to the jump of the selling speed. However, in the long run, as the average inventory
declines, the selling speed follows and the temporary welfare bump vanishes.

Which of these changes to model primitives best reflects the outcomes observed in
the wake of the COVID-19 pandemic in 2021 and 2022? Two of the changes to model
primitives generate an opposite co-movement in inventory levels and prices like the used
car market experienced in 2021 and 2022. First, an increase in inventory cost (second row
of Figure 4) leads to lower inventories and greater long-run retail prices. However, there
don’t seem to be any major changes to inventory costs during this time, so this mechanism
seems like an unlikely source of market disruptions observed during this time. In fact,
inventory costs may have decreased due to loosening monetary policy. Alternatively, a
10% increase in ks generates decreased inventory (particularly for our small dealers) and
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higher retail prices. This seems like a much more likely story, as supply problems with the
new car market spilled into the supply of wholesale used cars. Our model and calibration
tind evidence that changes to used-car supply generated reduced inventory and increased
prices in 2021 and 2022.

6 Concluding Remarks

This paper fills a gap between several active areas of literature: one on search theoretic
models of intermediaries, and one on pricing and inventory control. We highlight the
role of inventory dynamics in shaping retail price dynamics and dispersion in a search
model. The natural combination of equilibrium search and inventory management has
a significant logical consequence. Prices fluctuate in response to the inventories change,
as intermediaries adjust prices to sell inventory or restock. The model is extended in
various directions. We calibrate the model using used-car dealer data from Ohio and
quantitatively highlight the important interaction between search frictions and inventory
dynamics. The calibrated model is then used to study a number of important roles of
used-car dealers’ inventory management practice such as its welfare contributions to the
economy and its effect in shaping transition dynamics caused by shocks of important
market characteristics.

A Appendix: Proofs

Proof of Lemma 1. Suppose that the marginal value of holding one more unit of inventory
is positive at x, or V(x) — V(x — 1) > 0. We show that V(x+1) — V(x) < V(x) — V(x —
1). Consider, at time ¢, an intermediary with x; = x units of inventory that adopts the
optimal policy of its (x + 1)-inventory self at T > t until the first time its inventory drops
to x — 1. Clearly, such a policy is suboptimal for this intermediary with x; = x. Formally,
suppose it employs the following policy I' = {60, A;},>; that generates an inventory
process {x¢}¢>t. The policy solves the problem (7) for the inventory being x; + 1 until
the first instant when its true inventory drops to x — 1. Afterwards, the intermediary
employs the optimal policy. Denote

T=inf{t >t:x; <x-—1}.

Note that T — t is the first passage time from state x to state x — 1 of the Markov process
induced by policy I'. Crucially, T — t is a continuous random variable with a non-negative
support, and Pr(T —t > €) > 0 for an arbitrary ¢ > 0. The intuition is that, due to
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search frictions, it takes time for inventory level to change, regardless of whether the
intermediary’s policy is optimal or not.
Denote the associated life-time profit to be V! (x), then we must have

Vi) = Vi) B [Tt +1) el + eIV (1) - v

where the expectation is taken over the random time T. V' (x) differs from V(x + 1)
in two aspects. First, in time interval [, T), the flow inventory cost is c(x;) rather than
c(xr +1). Second, after the transaction at time T, the continuation value is V(x — 1)
instead of V(x). Because policy T is suboptimal, VI (x) < V(x); and therefore

V(x+1)-V(x) <E {— [ Dot +1) — el ldT+ e T (2) — V(x - 1)1}

<V(x)—=V(x—-1). (38)

The second inequality holds because (i) c(-) is increasing and (ii) E[e *(T~Y] € (0,1). As
a consequence, V(x) — V(x — 1) decreases in x when it is positive. Note that the first
inequality in (38) also implies that, whenever V(x) — V(x — 1) turns negative, then so
does V(x +1) — V(x). O

Proof of Proposition 1. Recall that both ¢,(-) and ¢y (+) are increasing. From Lemma 1, both
V(x) = V(x—1)and V(x + 1) — V(x) in FOCs (17) and (18) are decreasing in x, so the
tirst part of the proposition immediately follows. The second part of the proposition is a
direct consequence of the combination of part 1 and conditions (13) and (14). [

Proof of Proposition 2. First, we prove the existence and uniqueness by solving for the sta-
tionary probability distribution gss. In equilibrium, a dealer’s inventory follows an gen-
eral birth-death process {x;} over finite states, induced by the equilibrium policy 6*(-)
and A*(-). For a general birth-death process, conditions for the existence and uniqueness
of a stationary probability distribution are standard, and so is the probability mass func-
tion’s form. See, e.g., Chapter 6 of Pinsky and Karlin (2010) for reference. Nonetheless,
we show it here for completeness. The stationary distribution g, satisfies condition (21)
and can be solved recursively. At x = 0, we have 0 = ¢,(6%(1))gss(1) — p(A*(0))gss(0),

.  gu(1(0))
8= g, a1 80

Consequently, atx = 1,0 = ¢ (A*(0))gss(0) + @r(07(2))gss(2) — [¢r(07(1)) + P (A*(1))]gss (1),
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or

The general formula follows as

_Pu(A"(x—1))
gSS(x) - (Pr(e*(x)) gSS(x - 1) (39)
oG-

Clearly, with s being the base level of the stock defined in equation (20), gss(x) = 0 for
any x > s + 1 because ¢, (A*(x — 1)) = ¢4 (0) = 0, and equation (39) implies gss(x) =
0. Plugging (40) into the constraint ) 5. 7 gss(¥) = 1 yields the expression for gs(0). A
unique distribution exists if and only if gs5(0) is well-defined, which requires

s+1 x *
0 < iH‘Pw ?9:_)1)) < o,

x=1i=

and it naturally holds when s < co.

Second, we prove that the steady-state distribution is unimodal. The result holds triv-
ially if 1 = s, i.e., the distribution is over two points. If 1 < s, there are at least three
inventory levels with positive probability mass. Rearranging equation (21) yields

Pw(A"(x))8ss(x) = P (A" (x = 1))gss(x — 1) = ¢r (67 (x +1))gss(x + 1) — Pr (67 (x))gss (x)-
(41)
Because ¢, (A*(x)) decreases in x, the left-hand side of equation (41) is less than [gss(x) —
2ss(x —1)]pw(A*(x —1)). Because ¢, (6% (x)) increases in x, the right-hand side of equation
(41) is greater than [gss(x + 1) — gss(x)]¢r(6%(x)). Therefore, we have [gss(x) — gss(x
D]pw(A*(x — 1)) > [gss(x + 1) — gss(x)]¢r(0*(x)). That is, for any x > 1, whenever
Qss(x +1) > gss(x), we have gss(x) > gss(x — 1), and whenever gss(x) < gss(x — 1), we
have gss(x +1) < gss(x). So the steady-state probability mass function gss(-) is single-
peaked, or unimodal.
]

The omitted proof of Proposition 4. The argument of the existence and uniqueness is similar
to the proof of Proposition 2. We solve for the stationary probability distribution recur-
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sively. To ease notation, we suppress the super- and sub-scripts of gi; in this step and let
¢r(x), pw(x) represent ¢, (0*(x)), puw(A*(x)), respectively.

The KF equation at the steady state can be written as follows.

8(0)¢w(0) =g(1)¢r(1),
§(M[¢r(1) + P (1)] =8(2)¢r(2),

g(s)[¢r(s) + dpuw(s)] =g(s + )¢r(s + 1),
e(s+k)pr(s+k)=g(s+k+1)p,(s+k+1), Vk=1,..., S—s5+1,
ig X) +8(S+1)gr(S +1),

X

g(S+Kk)pr(S+k) =g(S+k+1)p,(S+k+1), Vk > 1.

Stationarity requires that ¢(S + k) = 0, Vk > 1. We also observe that

g(x +1)pr(x+1) Zg ) () =1,...,s;
g(s+Dpr(s+1) = (s—i—k)cpr(s—i—k) =g(5)¢.(S), Vk =1,..., S —s.
The system thus becomes functions of g(S), such that

(P:’Z;(i)k), Vk=1,...
9 =gl +1) AT — () 8
g5 1) =g(s —k+1) - PEZEED

8 (5)@(53!’;(5;&)(5) oD +(¢)>< =S @(sdf(i«s)lkqb:(ls)— gy T s

g(s+k) =g(S)

where ¢,(0) = 0. The system can be written more concisely as

cpr1+1)
H D+ dull)’ Vo< x<S,

with ¢, (i) =0if i > s+ 1, and ¢,(0) = 0. Applying the additional constraint }_ g(x) =
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yields

B Appendix: Statistics Supporting Directed Search

This appendix examines the relationship between a car’s time on market and list price.
The directed search doctrine relies on a positive relationship between the list price and
time to sell. Table B.1 reports the results of the regressions of the log of a car’s weeks
on market on the log of the car’s list price and other controlling variables. Across all
specifications with or without the weekly fixed effects and car model fixed effects, the
relationship between the time on market and the price is significantly positive.

Table B.1: Time on Market v.s. List Price

Small Dealers Large Dealers
1 2) @) 1 2) ®3)
log (list price) 0456  0.418  0.508 0.391 0.343 0.557
(0.027) (0.026) (0.042) (0.027) (0.026) (0.041)
log (mileage) 0.155 0.166  0.178 0.064 0.075 0.109
(0.014) (0.013) (0.015) (0.013) (0.012) (0.014)
Week FEs v v v v
Car model FEs v v
# of observations 16,239 16,239 16,239 15,551 15,551 15,551
R-square 0.025 0.083  0.100 0.026  0.089 0.106

Notes. Dependent variable is the log of weeks on market of a car. We use v to differentiate additional controls.
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